blob: f7f9d4d61c5a4c31be974350dbc257588d613c44 [file] [log] [blame]
extend ../_components/base.pug
block pagetitle
title Continuous Machine Learning, Scalable Deep Learning - Apache Ignite
meta(name="description", content="Apache Ignite Machine Learning is a set of simple and efficient APIs to enable continuous learning. It relies on Ignite's multi-tier storage that bring massive scalability for machine learning and deep learning tasks.")
link(rel="canonical", href="https://ignite.apache.org/features/machinelearning.html")
meta(property="og:title", content="Continuous Machine Learning, Scalable Deep Learning - Apache Ignite")
meta(property="og:type", content="article")
meta(property="og:url", content="https://ignite.apache.org/features/machinelearning.html")
meta(property="og:image", content="/img/og-pic.png")
meta(property="og:description", content="Apache Ignite Machine Learning is a set of simple and efficient APIs to enable continuous learning. It relies on Ignite's multi-tier storage that bring massive scalability for machine learning and deep learning tasks.")
block css
link(rel="stylesheet", href="../css/native-persistence.css?ver=" + config.version)
link(rel="stylesheet", href="../css/compute-apis.css?ver=" + config.version)
link(rel="stylesheet", href="../css/machinelearning.css?ver=" + config.version)
block main
- global.pageHref = "features"
- config.hdrClassName = "hdr__blue"
include ../_components/header.pug
section.innerhero
.container.innerhero__cont
.innerhero__main
.innerhero__pre.pb-3 Apache Ignite
h1.h1.innerhero__h1 Machine Learning<br> APIs
.innerhero__descr.pt-2.h5.
Continuously train, execute and update your machine learning<br> models at scale and in real time
.innerhero__action
a.button.innerhero__button(href="https://ignite.apache.org/docs/latest/index") Start Coding
img.innerhero__pic.innerhero__pic--machine(src="/img/features/machinelearning/machine.svg", alt="Machine-hero")
// /.innerhero
section.machine1
.container
.machine1__block.flexi
.machine1__info
h2.compute2__h2 Ignite Machine Learning APIs Overview
p.machine1__text.pt-5 Ignite Machine Learning (ML) is a set of simple, scalable, and efficient tools that allow building predictive machine learning models without costly data transfers.
h3.machine1__title.machine-top How does Apache Ignite support ML APIs?
p.machine1__text You have two options:
.machine1__options.flexi
.machine1__option
.machine1__number 01
.machine1__subtext Use built-in ML APIs for some of the typical ML and deep learning (DL) tasks, such as:
.machine1__subtext.flexi
span Classification
span Regression
span Clustering
span Recommendation
span Preprocessing
.machine1__option
.machine1__number 02
.machine1__subtext Use external ML and DL libraries that use Apache Ignite as scalable and high-performance distributed data storage:
.machine1__subtext.flexi
span TensorFlow
span Scikit
span Spark
span And more
img.machine1__image(src="/img/features/machinelearning/image.svg", alt="image")
section.compute2
.container
h2.compute2__h2 Benefits of Apache Ignite Machine Learning APIs
.machineitem.machineitem1.flexi
h3.machine__title Expedite the training process <br>with horizontally scalable cluster
.machine__info
p.machine__text You can distribute your training data set over an unlimited number of cluster nodes and train your models with the speed of memory.<br> With built-in Ignite ML APIs, you:
.machine__part.flexi
.compute2-points__item.fz20
.machine__subtext Avoid, or minimise ETL
.machine__part.flexi
.compute2-points__item.fz20
.machine__subtext Load all your training data sets in the same cluster
.machine__part.flexi
.compute2-points__item.fz20
.machine__subtext Minimise network utilization during the training process
.machineitem.machineitem1.flexi
h3.machine__title Execute your ML models with in-memory speed from your application code
.machine__info
p.machine__text Once the model is trained, deploy it on the cluster and execute it with in-memory speed. Use built-in Ignite APIs or 3rd party libraries.
.machineitem.machineitem1.flexi
h3.machine__title Continue updating your models with new data in real time
.machine__info
p.machine__text Data and user behavior change rapidly, so you must constantly update your models. With Apache Ignite, you can update your already deployed ML models with new data sets.
// /.compute2
section.native-bottom.container
.native-bottom__grid
article.nativebotblock
.h4.nativebotblock__title
img(src="/img/features/native-rocket.svg", alt="").nativebotblock__icon
span Ready to Start?
p.nativebotblock__text Start coding machine learning APIs
a.nativebotblock__link.arrowlink(href="https://ignite.apache.org/docs/latest/machine-learning/machine-learning", target="_blank") Performing Machine Learning
article.nativebotblock.nativebotblock--learn
.h4.nativebotblock__title
img(src="/img/features/native-docs.svg", alt="").nativebotblock__icon
span Want to Learn More?
p.nativebotblock__text Check out how Apache Ignite updates<br> trained models in real time
a.nativebotblock__link.arrowlink(href="https://ignite.apache.org/docs/latest/machine-learning/updating-trained-models", target="_blank") Updating Trained Models