title: “Spark and Iceberg Quickstart”

This guide will get you up and running with Apache Iceberg™ using Apache Spark™, including sample code to highlight some powerful features. You can learn more about Iceberg's Spark runtime by checking out the Spark section.

Docker-Compose

The fastest way to get started is to use a docker-compose file that uses the tabulario/spark-iceberg image which contains a local Spark cluster with a configured Iceberg catalog. To use this, you'll need to install the Docker CLI as well as the Docker Compose CLI.

Once you have those, save the yaml below into a file named docker-compose.yml:


services: spark-iceberg: image: tabulario/spark-iceberg container_name: spark-iceberg build: spark/ networks: iceberg_net: depends_on: - rest - minio volumes: - ./warehouse:/home/iceberg/warehouse - ./notebooks:/home/iceberg/notebooks/notebooks environment: - AWS_ACCESS_KEY_ID=admin - AWS_SECRET_ACCESS_KEY=password - AWS_REGION=us-east-1 ports: - 8888:8888 - 8080:8080 - 10000:10000 - 10001:10001 rest: image: apache/iceberg-rest-fixture container_name: iceberg-rest networks: iceberg_net: ports: - 8181:8181 environment: - AWS_ACCESS_KEY_ID=admin - AWS_SECRET_ACCESS_KEY=password - AWS_REGION=us-east-1 - CATALOG_WAREHOUSE=s3://warehouse/ - CATALOG_IO__IMPL=org.apache.iceberg.aws.s3.S3FileIO - CATALOG_S3_ENDPOINT=http://minio:9000 minio: image: minio/minio container_name: minio environment: - MINIO_ROOT_USER=admin - MINIO_ROOT_PASSWORD=password - MINIO_DOMAIN=minio networks: iceberg_net: aliases: - warehouse.minio ports: - 9001:9001 - 9000:9000 command: ["server", "/data", "--console-address", ":9001"] mc: depends_on: - minio image: minio/mc container_name: mc networks: iceberg_net: environment: - AWS_ACCESS_KEY_ID=admin - AWS_SECRET_ACCESS_KEY=password - AWS_REGION=us-east-1 entrypoint: | /bin/sh -c " until (/usr/bin/mc alias set minio http://minio:9000 admin password) do echo '...waiting...' && sleep 1; done; /usr/bin/mc rm -r --force minio/warehouse; /usr/bin/mc mb minio/warehouse; /usr/bin/mc policy set public minio/warehouse; tail -f /dev/null " networks: iceberg_net:

Next, start up the docker containers with this command:

docker-compose up

You can then run any of the following commands to start a Spark session.

=== “SparkSQL”

``` sh 
docker exec -it spark-iceberg spark-sql
```

=== “Spark-Shell”

``` sh 
docker exec -it spark-iceberg spark-shell
```

=== “PySpark”

``` sh 
docker exec -it spark-iceberg pyspark
```

!!! note

You can also use the notebook server available at [http://localhost:8888](http://localhost:8888)

Creating a table

To create your first Iceberg table in Spark, run a CREATE TABLE command. Let's create a table using demo.nyc.taxis where demo is the catalog name, nyc is the database name, and taxis is the table name.

=== “SparkSQL”

```sql
CREATE TABLE demo.nyc.taxis
(
  vendor_id bigint,
  trip_id bigint,
  trip_distance float,
  fare_amount double,
  store_and_fwd_flag string
)
PARTITIONED BY (vendor_id);
```

=== “Spark-Shell”

```scala
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
val schema = StructType( Array(
    StructField("vendor_id", LongType,true),
    StructField("trip_id", LongType,true),
    StructField("trip_distance", FloatType,true),
    StructField("fare_amount", DoubleType,true),
    StructField("store_and_fwd_flag", StringType,true)
))
val df = spark.createDataFrame(spark.sparkContext.emptyRDD[Row],schema)
df.writeTo("demo.nyc.taxis").create()
```

=== “PySpark”

```py
from pyspark.sql.types import DoubleType, FloatType, LongType, StructType,StructField, StringType
schema = StructType([
  StructField("vendor_id", LongType(), True),
  StructField("trip_id", LongType(), True),
  StructField("trip_distance", FloatType(), True),
  StructField("fare_amount", DoubleType(), True),
  StructField("store_and_fwd_flag", StringType(), True)
])

df = spark.createDataFrame([], schema)
df.writeTo("demo.nyc.taxis").create()
```

Iceberg catalogs support the full range of SQL DDL commands, including:

Writing Data to a Table

Once your table is created, you can insert records.

=== “SparkSQL”

```sql
INSERT INTO demo.nyc.taxis
VALUES (1, 1000371, 1.8, 15.32, 'N'), (2, 1000372, 2.5, 22.15, 'N'), (2, 1000373, 0.9, 9.01, 'N'), (1, 1000374, 8.4, 42.13, 'Y');
```

=== “Spark-Shell”

```scala
import org.apache.spark.sql.Row

val schema = spark.table("demo.nyc.taxis").schema
val data = Seq(
    Row(1: Long, 1000371: Long, 1.8f: Float, 15.32: Double, "N": String),
    Row(2: Long, 1000372: Long, 2.5f: Float, 22.15: Double, "N": String),
    Row(2: Long, 1000373: Long, 0.9f: Float, 9.01: Double, "N": String),
    Row(1: Long, 1000374: Long, 8.4f: Float, 42.13: Double, "Y": String)
)
val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema)
df.writeTo("demo.nyc.taxis").append()
```

=== “PySpark”

```py
schema = spark.table("demo.nyc.taxis").schema
data = [
    (1, 1000371, 1.8, 15.32, "N"),
    (2, 1000372, 2.5, 22.15, "N"),
    (2, 1000373, 0.9, 9.01, "N"),
    (1, 1000374, 8.4, 42.13, "Y")
  ]
df = spark.createDataFrame(data, schema)
df.writeTo("demo.nyc.taxis").append()
```

Reading Data from a Table

To read a table, simply use the Iceberg table's name.

=== “SparkSQL”

```sql
SELECT * FROM demo.nyc.taxis;
```

=== “Spark-Shell”

```scala
val df = spark.table("demo.nyc.taxis").show()
```

=== “PySpark”

```py
df = spark.table("demo.nyc.taxis").show()
```

Adding A Catalog

Iceberg has several catalog back-ends that can be used to track tables, like JDBC, Hive MetaStore and Glue. Catalogs are configured using properties under spark.sql.catalog.(catalog_name). In this guide, we use JDBC, but you can follow these instructions to configure other catalog types. To learn more, check out the Catalog page in the Spark section.

This configuration creates a path-based catalog named local for tables under $PWD/warehouse and adds support for Iceberg tables to Spark's built-in catalog.

=== “CLI”

```sh
spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:{{ icebergVersion }}\
    --conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions \
    --conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog \
    --conf spark.sql.catalog.spark_catalog.type=hive \
    --conf spark.sql.catalog.local=org.apache.iceberg.spark.SparkCatalog \
    --conf spark.sql.catalog.local.type=hadoop \
    --conf spark.sql.catalog.local.warehouse=$PWD/warehouse \
    --conf spark.sql.defaultCatalog=local
```

=== “spark-defaults.conf”

```sh
spark.jars.packages                                  org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:{{ icebergVersion }}
spark.sql.extensions                                 org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.spark_catalog                      org.apache.iceberg.spark.SparkSessionCatalog
spark.sql.catalog.spark_catalog.type                 hive
spark.sql.catalog.local                              org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.local.type                         hadoop
spark.sql.catalog.local.warehouse                    $PWD/warehouse
spark.sql.defaultCatalog                             local
```

!!! note If your Iceberg catalog is not set as the default catalog, you will have to switch to it by executing USE local;

Next steps

Adding Iceberg to Spark

If you already have a Spark environment, you can add Iceberg, using the --packages option.

=== “SparkSQL”

```sh
spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:{{ icebergVersion }}
```

=== “Spark-Shell”

```sh
spark-shell --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:{{ icebergVersion }}
```

=== “PySpark”

```sh
pyspark --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:{{ icebergVersion }}
```

!!! note If you want to include Iceberg in your Spark installation, add the Iceberg Spark runtime to Spark's jars folder. You can download the runtime by visiting to the Releases page.

[spark-runtime-jar]: https://search.maven.org/remotecontent?filepath=org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/{{ icebergVersion }}/iceberg-spark-runtime-3.5_2.12-{{ icebergVersion }}.jar

Learn More

Now that you're up an running with Iceberg and Spark, check out the Iceberg-Spark docs to learn more!