blob: 0e0dc375de0e3c78dc2015b4545f0e90c1853be1 [file] [log] [blame] [view]
---
hide:
- navigation
---
<!--
- Licensed to the Apache Software Foundation (ASF) under one
- or more contributor license agreements. See the NOTICE file
- distributed with this work for additional information
- regarding copyright ownership. The ASF licenses this file
- to you under the Apache License, Version 2.0 (the
- "License"); you may not use this file except in compliance
- with the License. You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing,
- software distributed under the License is distributed on an
- "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- KIND, either express or implied. See the License for the
- specific language governing permissions and limitations
- under the License.
-->
# Python API
(Py)Iceberg is [catalog](https://iceberg.apache.org/terms/#catalog) centric. Meaning that reading/writing data goes via a catalog. First step is to instantiate a catalog to load a table. Let's use the following configuration in `.pyiceberg.yaml` to define a REST catalog called `prod`:
```yaml
catalog:
prod:
uri: http://rest-catalog/ws/
credential: t-1234:secret
```
Note that multiple catalogs can be defined in the same `.pyiceberg.yaml`, for example, in the case of a Hive and REST catalog:
```yaml
catalog:
hive:
uri: thrift://127.0.0.1:9083
s3.endpoint: http://127.0.0.1:9000
s3.access-key-id: admin
s3.secret-access-key: password
rest:
uri: https://rest-server:8181/
warehouse: my-warehouse
```
The different catalogs can be loaded in PyIceberg by their name: `load_catalog(name="hive")` and `load_catalog(name="rest")`. An overview of the configuration options can be found on the [configuration page](https://py.iceberg.apache.org/configuration/).
This information must be placed inside a file called `.pyiceberg.yaml` located either in the `$HOME` or `%USERPROFILE%` directory (depending on whether the operating system is Unix-based or Windows-based, respectively), in the current working directory, or in the `$PYICEBERG_HOME` directory (if the corresponding environment variable is set).
It is also possible to load a catalog without using a `.pyiceberg.yaml` by passing in the properties directly:
```python
from pyiceberg.catalog import load_catalog
catalog = load_catalog(
"docs",
**{
"uri": "http://127.0.0.1:8181",
"s3.endpoint": "http://127.0.0.1:9000",
"py-io-impl": "pyiceberg.io.pyarrow.PyArrowFileIO",
"s3.access-key-id": "admin",
"s3.secret-access-key": "password",
}
)
```
Next, create a namespace:
```python
catalog.create_namespace("docs_example")
```
Or, list existing namespaces:
```python
ns = catalog.list_namespaces()
assert ns == [("docs_example",)]
```
## Create a table
To create a table from a catalog:
```python
from pyiceberg.schema import Schema
from pyiceberg.types import (
TimestampType,
FloatType,
DoubleType,
StringType,
NestedField,
StructType,
)
schema = Schema(
NestedField(field_id=1, name="datetime", field_type=TimestampType(), required=True),
NestedField(field_id=2, name="symbol", field_type=StringType(), required=True),
NestedField(field_id=3, name="bid", field_type=FloatType(), required=False),
NestedField(field_id=4, name="ask", field_type=DoubleType(), required=False),
NestedField(
field_id=5,
name="details",
field_type=StructType(
NestedField(
field_id=4, name="created_by", field_type=StringType(), required=False
),
),
required=False,
),
)
from pyiceberg.partitioning import PartitionSpec, PartitionField
partition_spec = PartitionSpec(
PartitionField(
source_id=1, field_id=1000, transform="day", name="datetime_day"
)
)
from pyiceberg.table.sorting import SortOrder, SortField
# Sort on the symbol
sort_order = SortOrder(SortField(source_id=2, transform='identity'))
catalog.create_table(
identifier="docs_example.bids",
schema=schema,
partition_spec=partition_spec,
sort_order=sort_order,
)
```
When the table is created, all IDs in the schema are re-assigned to ensure uniqueness.
To create a table using a pyarrow schema:
```python
import pyarrow as pa
schema = pa.schema([
pa.field("foo", pa.string(), nullable=True),
pa.field("bar", pa.int32(), nullable=False),
pa.field("baz", pa.bool_(), nullable=True),
])
catalog.create_table(
identifier="docs_example.bids",
schema=schema,
)
```
Another API to create a table is using the `create_table_transaction`. This follows the same APIs when making updates to a table. This is a friendly API for both setting the partition specification and sort-order, because you don't have to deal with field-IDs.
```python
with catalog.create_table_transaction(identifier="docs_example.bids", schema=schema) as txn:
with txn.update_schema() as update_schema:
update_schema.add_column(path="new_column", field_type='string')
with txn.update_spec() as update_spec:
update_spec.add_identity("symbol")
txn.set_properties(test_a="test_aa", test_b="test_b", test_c="test_c")
```
## Load a table
There are two ways of reading an Iceberg table; through a catalog, and by pointing at the Iceberg metadata directly. Reading through a catalog is preferred, and directly pointing at the metadata is read-only.
### Catalog table
Loading the `bids` table:
```python
table = catalog.load_table("docs_example.bids")
# Equivalent to:
table = catalog.load_table(("docs_example", "bids"))
# The tuple syntax can be used if the namespace or table contains a dot.
```
This returns a `Table` that represents an Iceberg table that can be queried and altered.
### Static table
To load a table directly from a `metadata.json` file (i.e., **without** using a catalog), you can use a `StaticTable` as follows:
```python
from pyiceberg.table import StaticTable
static_table = StaticTable.from_metadata(
"s3://warehouse/wh/nyc.db/taxis/metadata/00002-6ea51ce3-62aa-4197-9cf8-43d07c3440ca.metadata.json"
)
```
The static-table does not allow for write operations. If your table metadata directory contains a `version-hint.text` file, you can just specify the table root path, and the latest `metadata.json` file will be resolved automatically:
```python
from pyiceberg.table import StaticTable
static_table = StaticTable.from_metadata(
"s3://warehouse/wh/nyc.db/taxis"
)
```
## Check if a table exists
To check whether the `bids` table exists:
```python
catalog.table_exists("docs_example.bids")
```
Returns `True` if the table already exists.
## Write to a table
Reading and writing is being done using [Apache Arrow](https://arrow.apache.org/). Arrow is an in-memory columnar format for fast data interchange and in-memory analytics. Let's consider the following Arrow Table:
```python
import pyarrow as pa
df = pa.Table.from_pylist(
[
{"city": "Amsterdam", "lat": 52.371807, "long": 4.896029},
{"city": "San Francisco", "lat": 37.773972, "long": -122.431297},
{"city": "Drachten", "lat": 53.11254, "long": 6.0989},
{"city": "Paris", "lat": 48.864716, "long": 2.349014},
],
)
```
Next, create a table using the Arrow schema:
```python
from pyiceberg.catalog import load_catalog
catalog = load_catalog("default")
tbl = catalog.create_table("default.cities", schema=df.schema)
```
Next, write the data to the table. Both `append` and `overwrite` produce the same result, since the table is empty on creation:
<!-- prettier-ignore-start -->
!!! note inline end "Fast append"
PyIceberg defaults to the [fast append](https://iceberg.apache.org/spec/#snapshots) to minimize the amount of data written. This enables fast commit operations, reducing the possibility of conflicts. The downside of the fast append is that it creates more metadata than a merge commit. [Compaction is planned](https://github.com/apache/iceberg-python/issues/270) and will automatically rewrite all the metadata when a threshold is hit, to maintain performant reads.
<!-- prettier-ignore-end -->
```python
tbl.append(df)
# or
tbl.overwrite(df)
```
Now, the data is written to the table, and the table can be read using `tbl.scan().to_arrow()`:
```python
pyarrow.Table
city: string
lat: double
long: double
----
city: [["Amsterdam","San Francisco","Drachten","Paris"]]
lat: [[52.371807,37.773972,53.11254,48.864716]]
long: [[4.896029,-122.431297,6.0989,2.349014]]
```
If we want to add more data, we can use `.append()` again:
```python
tbl.append(pa.Table.from_pylist(
[{"city": "Groningen", "lat": 53.21917, "long": 6.56667}],
))
```
When reading the table `tbl.scan().to_arrow()` you can see that `Groningen` is now also part of the table:
```python
pyarrow.Table
city: string
lat: double
long: double
----
city: [["Amsterdam","San Francisco","Drachten","Paris"],["Groningen"]]
lat: [[52.371807,37.773972,53.11254,48.864716],[53.21917]]
long: [[4.896029,-122.431297,6.0989,2.349014],[6.56667]]
```
The nested lists indicate the different Arrow buffers. Each of the writes produce a [Parquet file](https://parquet.apache.org/) where each [row group](https://parquet.apache.org/docs/concepts/) translates into an Arrow buffer. In the case where the table is large, PyIceberg also allows the option to stream the buffers using the Arrow [RecordBatchReader](https://arrow.apache.org/docs/python/generated/pyarrow.RecordBatchReader.html), avoiding pulling everything into memory right away:
```python
for buf in tbl.scan().to_arrow_batch_reader():
print(f"Buffer contains {len(buf)} rows")
```
To avoid any type inconsistencies during writing, you can convert the Iceberg table schema to Arrow:
```python
df = pa.Table.from_pylist(
[{"city": "Groningen", "lat": 53.21917, "long": 6.56667}], schema=table.schema().as_arrow()
)
tbl.append(df)
```
You can delete some of the data from the table by calling `tbl.delete()` with a desired `delete_filter`. This will use the Iceberg metadata to only open up the Parquet files that contain relevant information.
```python
tbl.delete(delete_filter="city == 'Paris'")
```
In the above example, any records where the city field value equals to `Paris` will be deleted. Running `tbl.scan().to_arrow()` will now yield:
```python
pyarrow.Table
city: string
lat: double
long: double
----
city: [["Amsterdam","San Francisco","Drachten"],["Groningen"]]
lat: [[52.371807,37.773972,53.11254],[53.21917]]
long: [[4.896029,-122.431297,6.0989],[6.56667]]
```
In the case of `tbl.delete(delete_filter="city == 'Groningen'")`, the whole Parquet file will be dropped without checking it contents, since from the Iceberg metadata PyIceberg can derive that all the content in the file matches the predicate.
### Partial overwrites
When using the `overwrite` API, you can use an `overwrite_filter` to delete data that matches the filter before appending new data into the table. For example, consider the following Iceberg table:
```python
import pyarrow as pa
df = pa.Table.from_pylist(
[
{"city": "Amsterdam", "lat": 52.371807, "long": 4.896029},
{"city": "San Francisco", "lat": 37.773972, "long": -122.431297},
{"city": "Drachten", "lat": 53.11254, "long": 6.0989},
{"city": "Paris", "lat": 48.864716, "long": 2.349014},
],
)
from pyiceberg.catalog import load_catalog
catalog = load_catalog("default")
tbl = catalog.create_table("default.cities", schema=df.schema)
tbl.append(df)
```
You can overwrite the record of `Paris` with a record of `New York`:
```python
from pyiceberg.expressions import EqualTo
df = pa.Table.from_pylist(
[
{"city": "New York", "lat": 40.7128, "long": 74.0060},
]
)
tbl.overwrite(df, overwrite_filter=EqualTo('city', "Paris"))
```
This produces the following result with `tbl.scan().to_arrow()`:
```python
pyarrow.Table
city: large_string
lat: double
long: double
----
city: [["New York"],["Amsterdam","San Francisco","Drachten"]]
lat: [[40.7128],[52.371807,37.773972,53.11254]]
long: [[74.006],[4.896029,-122.431297,6.0989]]
```
If the PyIceberg table is partitioned, you can use `tbl.dynamic_partition_overwrite(df)` to replace the existing partitions with new ones provided in the dataframe. The partitions to be replaced are detected automatically from the provided arrow table.
For example, with an iceberg table with a partition specified on `"city"` field:
```python
from pyiceberg.schema import Schema
from pyiceberg.types import DoubleType, NestedField, StringType
schema = Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
)
tbl = catalog.create_table(
"default.cities",
schema=schema,
partition_spec=PartitionSpec(PartitionField(source_id=1, field_id=1001, transform=IdentityTransform(), name="city_identity"))
)
```
And we want to overwrite the data for the partition of `"Paris"`:
```python
import pyarrow as pa
df = pa.Table.from_pylist(
[
{"city": "Amsterdam", "lat": 52.371807, "long": 4.896029},
{"city": "San Francisco", "lat": 37.773972, "long": -122.431297},
{"city": "Drachten", "lat": 53.11254, "long": 6.0989},
{"city": "Paris", "lat": -48.864716, "long": -2.349014},
],
)
tbl.append(df)
```
Then we can call `dynamic_partition_overwrite` with this arrow table:
```python
df_corrected = pa.Table.from_pylist([
{"city": "Paris", "lat": 48.864716, "long": 2.349014}
])
tbl.dynamic_partition_overwrite(df_corrected)
```
This produces the following result with `tbl.scan().to_arrow()`:
```python
pyarrow.Table
city: large_string
lat: double
long: double
----
city: [["Paris"],["Amsterdam"],["Drachten"],["San Francisco"]]
lat: [[48.864716],[52.371807],[53.11254],[37.773972]]
long: [[2.349014],[4.896029],[6.0989],[-122.431297]]
```
### Upsert
PyIceberg supports upsert operations, meaning that it is able to merge an Arrow table into an Iceberg table. Rows are considered the same based on the [identifier field](https://iceberg.apache.org/spec/?column-projection#identifier-field-ids). If a row is already in the table, it will update that row. If a row cannot be found, it will insert that new row.
Consider the following table, with some data:
```python
from pyiceberg.schema import Schema
from pyiceberg.types import IntegerType, NestedField, StringType
import pyarrow as pa
schema = Schema(
NestedField(1, "city", StringType(), required=True),
NestedField(2, "inhabitants", IntegerType(), required=True),
# Mark City as the identifier field, also known as the primary-key
identifier_field_ids=[1]
)
tbl = catalog.create_table("default.cities", schema=schema)
arrow_schema = pa.schema(
[
pa.field("city", pa.string(), nullable=False),
pa.field("inhabitants", pa.int32(), nullable=False),
]
)
# Write some data
df = pa.Table.from_pylist(
[
{"city": "Amsterdam", "inhabitants": 921402},
{"city": "San Francisco", "inhabitants": 808988},
{"city": "Drachten", "inhabitants": 45019},
{"city": "Paris", "inhabitants": 2103000},
],
schema=arrow_schema
)
tbl.append(df)
```
Next, we'll upsert a table into the Iceberg table:
```python
df = pa.Table.from_pylist(
[
# Will be updated, the inhabitants has been updated
{"city": "Drachten", "inhabitants": 45505},
# New row, will be inserted
{"city": "Berlin", "inhabitants": 3432000},
# Ignored, already exists in the table
{"city": "Paris", "inhabitants": 2103000},
],
schema=arrow_schema
)
upd = tbl.upsert(df)
assert upd.rows_updated == 1
assert upd.rows_inserted == 1
```
PyIceberg will automatically detect which rows need to be updated, inserted or can simply be ignored.
## Inspecting tables
To explore the table metadata, tables can be inspected.
<!-- prettier-ignore-start -->
!!! tip "Time Travel"
To inspect a tables's metadata with the time travel feature, call the inspect table method with the `snapshot_id` argument.
Time travel is supported on all metadata tables except `snapshots` and `refs`.
```python
table.inspect.entries(snapshot_id=805611270568163028)
```
<!-- prettier-ignore-end -->
### Snapshots
Inspect the snapshots of the table:
```python
table.inspect.snapshots()
```
```python
pyarrow.Table
committed_at: timestamp[ms] not null
snapshot_id: int64 not null
parent_id: int64
operation: string
manifest_list: string not null
summary: map<string, string>
child 0, entries: struct<key: string not null, value: string> not null
child 0, key: string not null
child 1, value: string
----
committed_at: [[2024-03-15 15:01:25.682,2024-03-15 15:01:25.730,2024-03-15 15:01:25.772]]
snapshot_id: [[805611270568163028,3679426539959220963,5588071473139865870]]
parent_id: [[null,805611270568163028,3679426539959220963]]
operation: [["append","overwrite","append"]]
manifest_list: [["s3://warehouse/default/table_metadata_snapshots/metadata/snap-805611270568163028-0-43637daf-ea4b-4ceb-b096-a60c25481eb5.avro","s3://warehouse/default/table_metadata_snapshots/metadata/snap-3679426539959220963-0-8be81019-adf1-4bb6-a127-e15217bd50b3.avro","s3://warehouse/default/table_metadata_snapshots/metadata/snap-5588071473139865870-0-1382dd7e-5fbc-4c51-9776-a832d7d0984e.avro"]]
summary: [[keys:["added-files-size","added-data-files","added-records","total-data-files","total-delete-files","total-records","total-files-size","total-position-deletes","total-equality-deletes"]values:["5459","1","3","1","0","3","5459","0","0"],keys:["added-files-size","added-data-files","added-records","total-data-files","total-records",...,"total-equality-deletes","total-files-size","deleted-data-files","deleted-records","removed-files-size"]values:["5459","1","3","1","3",...,"0","5459","1","3","5459"],keys:["added-files-size","added-data-files","added-records","total-data-files","total-delete-files","total-records","total-files-size","total-position-deletes","total-equality-deletes"]values:["5459","1","3","2","0","6","10918","0","0"]]]
```
### Partitions
Inspect the partitions of the table:
```python
table.inspect.partitions()
```
```python
pyarrow.Table
partition: struct<dt_month: int32, dt_day: date32[day]> not null
child 0, dt_month: int32
child 1, dt_day: date32[day]
spec_id: int32 not null
record_count: int64 not null
file_count: int32 not null
total_data_file_size_in_bytes: int64 not null
position_delete_record_count: int64 not null
position_delete_file_count: int32 not null
equality_delete_record_count: int64 not null
equality_delete_file_count: int32 not null
last_updated_at: timestamp[ms]
last_updated_snapshot_id: int64
----
partition: [
-- is_valid: all not null
-- child 0 type: int32
[null,null,612]
-- child 1 type: date32[day]
[null,2021-02-01,null]]
spec_id: [[2,1,0]]
record_count: [[1,1,2]]
file_count: [[1,1,2]]
total_data_file_size_in_bytes: [[641,641,1260]]
position_delete_record_count: [[0,0,0]]
position_delete_file_count: [[0,0,0]]
equality_delete_record_count: [[0,0,0]]
equality_delete_file_count: [[0,0,0]]
last_updated_at: [[2024-04-13 18:59:35.981,2024-04-13 18:59:35.465,2024-04-13 18:59:35.003]]
```
### Entries
To show all the table's current manifest entries for both data and delete files.
```python
table.inspect.entries()
```
```python
pyarrow.Table
status: int8 not null
snapshot_id: int64 not null
sequence_number: int64 not null
file_sequence_number: int64 not null
data_file: struct<content: int8 not null, file_path: string not null, file_format: string not null, partition: struct<> not null, record_count: int64 not null, file_size_in_bytes: int64 not null, column_sizes: map<int32, int64>, value_counts: map<int32, int64>, null_value_counts: map<int32, int64>, nan_value_counts: map<int32, int64>, lower_bounds: map<int32, binary>, upper_bounds: map<int32, binary>, key_metadata: binary, split_offsets: list<item: int64>, equality_ids: list<item: int32>, sort_order_id: int32> not null
child 0, content: int8 not null
child 1, file_path: string not null
child 2, file_format: string not null
child 3, partition: struct<> not null
child 4, record_count: int64 not null
child 5, file_size_in_bytes: int64 not null
child 6, column_sizes: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
child 7, value_counts: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
child 8, null_value_counts: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
child 9, nan_value_counts: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
child 10, lower_bounds: map<int32, binary>
child 0, entries: struct<key: int32 not null, value: binary> not null
child 0, key: int32 not null
child 1, value: binary
child 11, upper_bounds: map<int32, binary>
child 0, entries: struct<key: int32 not null, value: binary> not null
child 0, key: int32 not null
child 1, value: binary
child 12, key_metadata: binary
child 13, split_offsets: list<item: int64>
child 0, item: int64
child 14, equality_ids: list<item: int32>
child 0, item: int32
child 15, sort_order_id: int32
readable_metrics: struct<city: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: string, upper_bound: string> not null, lat: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null, long: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null>
child 0, city: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: string, upper_bound: string> not null
child 0, column_size: int64
child 1, value_count: int64
child 2, null_value_count: int64
child 3, nan_value_count: int64
child 4, lower_bound: string
child 5, upper_bound: string
child 1, lat: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null
child 0, column_size: int64
child 1, value_count: int64
child 2, null_value_count: int64
child 3, nan_value_count: int64
child 4, lower_bound: double
child 5, upper_bound: double
child 2, long: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null
child 0, column_size: int64
child 1, value_count: int64
child 2, null_value_count: int64
child 3, nan_value_count: int64
child 4, lower_bound: double
child 5, upper_bound: double
----
status: [[1]]
snapshot_id: [[6245626162224016531]]
sequence_number: [[1]]
file_sequence_number: [[1]]
data_file: [
-- is_valid: all not null
-- child 0 type: int8
[0]
-- child 1 type: string
["s3://warehouse/default/cities/data/00000-0-80766b66-e558-4150-a5cf-85e4c609b9fe.parquet"]
-- child 2 type: string
["PARQUET"]
-- child 3 type: struct<>
-- is_valid: all not null
-- child 4 type: int64
[4]
-- child 5 type: int64
[1656]
-- child 6 type: map<int32, int64>
[keys:[1,2,3]values:[140,135,135]]
-- child 7 type: map<int32, int64>
[keys:[1,2,3]values:[4,4,4]]
-- child 8 type: map<int32, int64>
[keys:[1,2,3]values:[0,0,0]]
-- child 9 type: map<int32, int64>
[keys:[]values:[]]
-- child 10 type: map<int32, binary>
[keys:[1,2,3]values:[416D7374657264616D,8602B68311E34240,3A77BB5E9A9B5EC0]]
-- child 11 type: map<int32, binary>
[keys:[1,2,3]values:[53616E204672616E636973636F,F5BEF1B5678E4A40,304CA60A46651840]]
-- child 12 type: binary
[null]
-- child 13 type: list<item: int64>
[[4]]
-- child 14 type: list<item: int32>
[null]
-- child 15 type: int32
[null]]
readable_metrics: [
-- is_valid: all not null
-- child 0 type: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: string, upper_bound: string>
-- is_valid: all not null
-- child 0 type: int64
[140]
-- child 1 type: int64
[4]
-- child 2 type: int64
[0]
-- child 3 type: int64
[null]
-- child 4 type: string
["Amsterdam"]
-- child 5 type: string
["San Francisco"]
-- child 1 type: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double>
-- is_valid: all not null
-- child 0 type: int64
[135]
-- child 1 type: int64
[4]
-- child 2 type: int64
[0]
-- child 3 type: int64
[null]
-- child 4 type: double
[37.773972]
-- child 5 type: double
[53.11254]
-- child 2 type: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double>
-- is_valid: all not null
-- child 0 type: int64
[135]
-- child 1 type: int64
[4]
-- child 2 type: int64
[0]
-- child 3 type: int64
[null]
-- child 4 type: double
[-122.431297]
-- child 5 type: double
[6.0989]]
```
### References
To show a table's known snapshot references:
```python
table.inspect.refs()
```
```python
pyarrow.Table
name: string not null
type: string not null
snapshot_id: int64 not null
max_reference_age_in_ms: int64
min_snapshots_to_keep: int32
max_snapshot_age_in_ms: int64
----
name: [["main","testTag"]]
type: [["BRANCH","TAG"]]
snapshot_id: [[2278002651076891950,2278002651076891950]]
max_reference_age_in_ms: [[null,604800000]]
min_snapshots_to_keep: [[null,10]]
max_snapshot_age_in_ms: [[null,604800000]]
```
### Manifests
To show a table's current file manifests:
```python
table.inspect.manifests()
```
```python
pyarrow.Table
content: int8 not null
path: string not null
length: int64 not null
partition_spec_id: int32 not null
added_snapshot_id: int64 not null
added_data_files_count: int32 not null
existing_data_files_count: int32 not null
deleted_data_files_count: int32 not null
added_delete_files_count: int32 not null
existing_delete_files_count: int32 not null
deleted_delete_files_count: int32 not null
partition_summaries: list<item: struct<contains_null: bool not null, contains_nan: bool, lower_bound: string, upper_bound: string>> not null
child 0, item: struct<contains_null: bool not null, contains_nan: bool, lower_bound: string, upper_bound: string>
child 0, contains_null: bool not null
child 1, contains_nan: bool
child 2, lower_bound: string
child 3, upper_bound: string
----
content: [[0]]
path: [["s3://warehouse/default/table_metadata_manifests/metadata/3bf5b4c6-a7a4-4b43-a6ce-ca2b4887945a-m0.avro"]]
length: [[6886]]
partition_spec_id: [[0]]
added_snapshot_id: [[3815834705531553721]]
added_data_files_count: [[1]]
existing_data_files_count: [[0]]
deleted_data_files_count: [[0]]
added_delete_files_count: [[0]]
existing_delete_files_count: [[0]]
deleted_delete_files_count: [[0]]
partition_summaries: [[ -- is_valid: all not null
-- child 0 type: bool
[false]
-- child 1 type: bool
[false]
-- child 2 type: string
["test"]
-- child 3 type: string
["test"]]]
```
### Metadata Log Entries
To show table metadata log entries:
```python
table.inspect.metadata_log_entries()
```
```python
pyarrow.Table
timestamp: timestamp[ms] not null
file: string not null
latest_snapshot_id: int64
latest_schema_id: int32
latest_sequence_number: int64
----
timestamp: [[2024-04-28 17:03:00.214,2024-04-28 17:03:00.352,2024-04-28 17:03:00.445,2024-04-28 17:03:00.498]]
file: [["s3://warehouse/default/table_metadata_log_entries/metadata/00000-0b3b643b-0f3a-4787-83ad-601ba57b7319.metadata.json","s3://warehouse/default/table_metadata_log_entries/metadata/00001-f74e4b2c-0f89-4f55-822d-23d099fd7d54.metadata.json","s3://warehouse/default/table_metadata_log_entries/metadata/00002-97e31507-e4d9-4438-aff1-3c0c5304d271.metadata.json","s3://warehouse/default/table_metadata_log_entries/metadata/00003-6c8b7033-6ad8-4fe4-b64d-d70381aeaddc.metadata.json"]]
latest_snapshot_id: [[null,3958871664825505738,1289234307021405706,7640277914614648349]]
latest_schema_id: [[null,0,0,0]]
latest_sequence_number: [[null,0,0,0]]
```
### History
To show a table's history:
```python
table.inspect.history()
```
```python
pyarrow.Table
made_current_at: timestamp[ms] not null
snapshot_id: int64 not null
parent_id: int64
is_current_ancestor: bool not null
----
made_current_at: [[2024-06-18 16:17:48.768,2024-06-18 16:17:49.240,2024-06-18 16:17:49.343,2024-06-18 16:17:49.511]]
snapshot_id: [[4358109269873137077,3380769165026943338,4358109269873137077,3089420140651211776]]
parent_id: [[null,4358109269873137077,null,4358109269873137077]]
is_current_ancestor: [[true,false,true,true]]
```
### Files
Inspect the data files in the current snapshot of the table:
```python
table.inspect.files()
```
```python
pyarrow.Table
content: int8 not null
file_path: string not null
file_format: dictionary<values=string, indices=int32, ordered=0> not null
spec_id: int32 not null
record_count: int64 not null
file_size_in_bytes: int64 not null
column_sizes: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
value_counts: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
null_value_counts: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
nan_value_counts: map<int32, int64>
child 0, entries: struct<key: int32 not null, value: int64> not null
child 0, key: int32 not null
child 1, value: int64
lower_bounds: map<int32, binary>
child 0, entries: struct<key: int32 not null, value: binary> not null
child 0, key: int32 not null
child 1, value: binary
upper_bounds: map<int32, binary>
child 0, entries: struct<key: int32 not null, value: binary> not null
child 0, key: int32 not null
child 1, value: binary
key_metadata: binary
split_offsets: list<item: int64>
child 0, item: int64
equality_ids: list<item: int32>
child 0, item: int32
sort_order_id: int32
readable_metrics: struct<city: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: large_string, upper_bound: large_string> not null, lat: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null, long: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null>
child 0, city: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: string, upper_bound: string> not null
child 0, column_size: int64
child 1, value_count: int64
child 2, null_value_count: int64
child 3, nan_value_count: int64
child 4, lower_bound: large_string
child 5, upper_bound: large_string
child 1, lat: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null
child 0, column_size: int64
child 1, value_count: int64
child 2, null_value_count: int64
child 3, nan_value_count: int64
child 4, lower_bound: double
child 5, upper_bound: double
child 2, long: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double> not null
child 0, column_size: int64
child 1, value_count: int64
child 2, null_value_count: int64
child 3, nan_value_count: int64
child 4, lower_bound: double
child 5, upper_bound: double
----
content: [[0,0]]
file_path: [["s3://warehouse/default/table_metadata_files/data/00000-0-9ea7d222-6457-467f-bad5-6fb125c9aa5f.parquet","s3://warehouse/default/table_metadata_files/data/00000-0-afa8893c-de71-4710-97c9-6b01590d0c44.parquet"]]
file_format: [["PARQUET","PARQUET"]]
spec_id: [[0,0]]
record_count: [[3,3]]
file_size_in_bytes: [[5459,5459]]
column_sizes: [[keys:[1,2,3,4,5,...,8,9,10,11,12]values:[49,78,128,94,118,...,118,118,94,78,109],keys:[1,2,3,4,5,...,8,9,10,11,12]values:[49,78,128,94,118,...,118,118,94,78,109]]]
value_counts: [[keys:[1,2,3,4,5,...,8,9,10,11,12]values:[3,3,3,3,3,...,3,3,3,3,3],keys:[1,2,3,4,5,...,8,9,10,11,12]values:[3,3,3,3,3,...,3,3,3,3,3]]]
null_value_counts: [[keys:[1,2,3,4,5,...,8,9,10,11,12]values:[1,1,1,1,1,...,1,1,1,1,1],keys:[1,2,3,4,5,...,8,9,10,11,12]values:[1,1,1,1,1,...,1,1,1,1,1]]]
nan_value_counts: [[keys:[]values:[],keys:[]values:[]]]
lower_bounds: [[keys:[1,2,3,4,5,...,8,9,10,11,12]values:[00,61,61616161616161616161616161616161,01000000,0100000000000000,...,009B6ACA38F10500,009B6ACA38F10500,9E4B0000,01,00000000000000000000000000000000],keys:[1,2,3,4,5,...,8,9,10,11,12]values:[00,61,61616161616161616161616161616161,01000000,0100000000000000,...,009B6ACA38F10500,009B6ACA38F10500,9E4B0000,01,00000000000000000000000000000000]]]
upper_bounds:[[keys:[1,2,3,4,5,...,8,9,10,11,12]values:[00,61,61616161616161616161616161616161,01000000,0100000000000000,...,009B6ACA38F10500,009B6ACA38F10500,9E4B0000,01,00000000000000000000000000000000],keys:[1,2,3,4,5,...,8,9,10,11,12]values:[00,61,61616161616161616161616161616161,01000000,0100000000000000,...,009B6ACA38F10500,009B6ACA38F10500,9E4B0000,01,00000000000000000000000000000000]]]
key_metadata: [[0100,0100]]
split_offsets:[[[],[]]]
equality_ids:[[[],[]]]
sort_order_id:[[[],[]]]
readable_metrics: [
-- is_valid: all not null
-- child 0 type: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: large_string, upper_bound: large_string>
-- is_valid: all not null
-- child 0 type: int64
[140]
-- child 1 type: int64
[4]
-- child 2 type: int64
[0]
-- child 3 type: int64
[null]
-- child 4 type: large_string
["Amsterdam"]
-- child 5 type: large_string
["San Francisco"]
-- child 1 type: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double>
-- is_valid: all not null
-- child 0 type: int64
[135]
-- child 1 type: int64
[4]
-- child 2 type: int64
[0]
-- child 3 type: int64
[null]
-- child 4 type: double
[37.773972]
-- child 5 type: double
[53.11254]
-- child 2 type: struct<column_size: int64, value_count: int64, null_value_count: int64, nan_value_count: int64, lower_bound: double, upper_bound: double>
-- is_valid: all not null
-- child 0 type: int64
[135]
-- child 1 type: int64
[4]
-- child 2 type: int64
[0]
-- child 3 type: int64
[null]
-- child 4 type: double
[-122.431297]
-- child 5 type: double
[6.0989]]
```
!!! info
Content refers to type of content stored by the data file: `0` - `Data`, `1` - `Position Deletes`, `2` - `Equality Deletes`
To show only data files or delete files in the current snapshot, use `table.inspect.data_files()` and `table.inspect.delete_files()` respectively.
## Add Files
Expert Iceberg users may choose to commit existing parquet files to the Iceberg table as data files, without rewriting them.
<!-- prettier-ignore-start -->
!!! note "Name Mapping"
Because `add_files` uses existing files without writing new parquet files that are aware of the Iceberg's schema, it requires the Iceberg's table to have a [Name Mapping](https://iceberg.apache.org/spec/?h=name+mapping#name-mapping-serialization) (The Name mapping maps the field names within the parquet files to the Iceberg field IDs). Hence, `add_files` requires that there are no field IDs in the parquet file's metadata, and creates a new Name Mapping based on the table's current schema if the table doesn't already have one.
!!! note "Partitions"
`add_files` only requires the client to read the existing parquet files' metadata footer to infer the partition value of each file. This implementation also supports adding files to Iceberg tables with partition transforms like `MonthTransform`, and `TruncateTransform` which preserve the order of the values after the transformation (Any Transform that has the `preserves_order` property set to True is supported). Please note that if the column statistics of the `PartitionField`'s source column are not present in the parquet metadata, the partition value is inferred as `None`.
!!! warning "Maintenance Operations"
Because `add_files` commits the existing parquet files to the Iceberg Table as any other data file, destructive maintenance operations like expiring snapshots will remove them.
!!! warning "Check Duplicate Files"
The `check_duplicate_files` parameter determines whether the method validates that the specified `file_paths` do not already exist in the Iceberg table. When set to True (the default), the method performs a validation against the table’s current data files to prevent accidental duplication, helping to maintain data consistency by ensuring the same file is not added multiple times. While this check is important for data integrity, it can introduce performance overhead for tables with a large number of files. Setting check_duplicate_files=False can improve performance but increases the risk of duplicate files, which may lead to data inconsistencies or table corruption. It is strongly recommended to keep this parameter enabled unless duplicate file handling is strictly enforced elsewhere.
<!-- prettier-ignore-end -->
### Usage
| Parameter | Required? | Type | Description |
| ------------------------- | --------- | -------------- | ----------------------------------------------------------------------- |
| `file_paths` | ✔️ | List[str] | The list of full file paths to be added as data files to the table |
| `snapshot_properties` | | Dict[str, str] | Properties to set for the new snapshot. Defaults to an empty dictionary |
| `check_duplicate_files` | | bool | Whether to check for duplicate files. Defaults to `True` |
### Example
Add files to Iceberg table:
```python
# Given that these parquet files have schema consistent with the Iceberg table
file_paths = [
"s3a://warehouse/default/existing-1.parquet",
"s3a://warehouse/default/existing-2.parquet",
]
# They can be added to the table without rewriting them
tbl.add_files(file_paths=file_paths)
# A new snapshot is committed to the table with manifests pointing to the existing parquet files
```
Add files to Iceberg table with custom snapshot properties:
```python
# Assume an existing Iceberg table object `tbl`
file_paths = [
"s3a://warehouse/default/existing-1.parquet",
"s3a://warehouse/default/existing-2.parquet",
]
# Custom snapshot properties
snapshot_properties = {"abc": "def"}
# Enable duplicate file checking
check_duplicate_files = True
# Add the Parquet files to the Iceberg table without rewriting
tbl.add_files(
file_paths=file_paths,
snapshot_properties=snapshot_properties,
check_duplicate_files=check_duplicate_files
)
# NameMapping must have been set to enable reads
assert tbl.name_mapping() is not None
# Verify that the snapshot property was set correctly
assert tbl.metadata.snapshots[-1].summary["abc"] == "def"
```
## Schema evolution
PyIceberg supports full schema evolution through the Python API. It takes care of setting the field-IDs and makes sure that only non-breaking changes are done (can be overridden).
In the examples below, the `.update_schema()` is called from the table itself.
```python
with table.update_schema() as update:
update.add_column("some_field", IntegerType(), "doc")
```
You can also initiate a transaction if you want to make more changes than just evolving the schema:
```python
with table.transaction() as transaction:
with transaction.update_schema() as update_schema:
update.add_column("some_other_field", IntegerType(), "doc")
# ... Update properties etc
```
### Union by Name
Using `.union_by_name()` you can merge another schema into an existing schema without having to worry about field-IDs:
```python
from pyiceberg.catalog import load_catalog
from pyiceberg.schema import Schema
from pyiceberg.types import NestedField, StringType, DoubleType, LongType
catalog = load_catalog()
schema = Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
)
table = catalog.create_table("default.locations", schema)
new_schema = Schema(
NestedField(1, "city", StringType(), required=False),
NestedField(2, "lat", DoubleType(), required=False),
NestedField(3, "long", DoubleType(), required=False),
NestedField(10, "population", LongType(), required=False),
)
with table.update_schema() as update:
update.union_by_name(new_schema)
```
Now the table has the union of the two schemas `print(table.schema())`:
```python
table {
1: city: optional string
2: lat: optional double
3: long: optional double
4: population: optional long
}
```
### Add column
Using `add_column` you can add a column, without having to worry about the field-id:
```python
with table.update_schema() as update:
update.add_column("retries", IntegerType(), "Number of retries to place the bid")
# In a struct
update.add_column("details", StructType())
with table.update_schema() as update:
update.add_column(("details", "confirmed_by"), StringType(), "Name of the exchange")
```
A complex type must exist before columns can be added to it. Fields in complex types are added in a tuple.
### Rename column
Renaming a field in an Iceberg table is simple:
```python
with table.update_schema() as update:
update.rename_column("retries", "num_retries")
# This will rename `confirmed_by` to `processed_by` in the `details` struct
update.rename_column(("details", "confirmed_by"), "processed_by")
```
### Move column
Move order of fields:
```python
with table.update_schema() as update:
update.move_first("symbol")
# This will move `bid` after `ask`
update.move_after("bid", "ask")
# This will move `confirmed_by` before `exchange` in the `details` struct
update.move_before(("details", "confirmed_by"), ("details", "exchange"))
```
### Update column
Update a fields' type, description or required.
```python
with table.update_schema() as update:
# Promote a float to a double
update.update_column("bid", field_type=DoubleType())
# Make a field optional
update.update_column("symbol", required=False)
# Update the documentation
update.update_column("symbol", doc="Name of the share on the exchange")
```
Be careful, some operations are not compatible, but can still be done at your own risk by setting `allow_incompatible_changes`:
```python
with table.update_schema(allow_incompatible_changes=True) as update:
# Incompatible change, cannot require an optional field
update.update_column("symbol", required=True)
```
### Delete column
Delete a field, careful this is a incompatible change (readers/writers might expect this field):
```python
with table.update_schema(allow_incompatible_changes=True) as update:
update.delete_column("some_field")
# In a struct
update.delete_column(("details", "confirmed_by"))
```
## Partition evolution
PyIceberg supports partition evolution. See the [partition evolution](https://iceberg.apache.org/spec/#partition-evolution)
for more details.
The API to use when evolving partitions is the `update_spec` API on the table.
```python
with table.update_spec() as update:
update.add_field("id", BucketTransform(16), "bucketed_id")
update.add_field("event_ts", DayTransform(), "day_ts")
```
Updating the partition spec can also be done as part of a transaction with other operations.
```python
with table.transaction() as transaction:
with transaction.update_spec() as update_spec:
update_spec.add_field("id", BucketTransform(16), "bucketed_id")
update_spec.add_field("event_ts", DayTransform(), "day_ts")
# ... Update properties etc
```
### Add fields
New partition fields can be added via the `add_field` API which takes in the field name to partition on,
the partition transform, and an optional partition name. If the partition name is not specified,
one will be created.
```python
with table.update_spec() as update:
update.add_field("id", BucketTransform(16), "bucketed_id")
update.add_field("event_ts", DayTransform(), "day_ts")
# identity is a shortcut API for adding an IdentityTransform
update.identity("some_field")
```
### Remove fields
Partition fields can also be removed via the `remove_field` API if it no longer makes sense to partition on those fields.
```python
with table.update_spec() as update:
# Remove the partition field with the name
update.remove_field("some_partition_name")
```
### Rename fields
Partition fields can also be renamed via the `rename_field` API.
```python
with table.update_spec() as update:
# Rename the partition field with the name bucketed_id to sharded_id
update.rename_field("bucketed_id", "sharded_id")
```
## Table properties
Set and remove properties through the `Transaction` API:
```python
with table.transaction() as transaction:
transaction.set_properties(abc="def")
assert table.properties == {"abc": "def"}
with table.transaction() as transaction:
transaction.remove_properties("abc")
assert table.properties == {}
```
Or, without context manager:
```python
table = table.transaction().set_properties(abc="def").commit_transaction()
assert table.properties == {"abc": "def"}
table = table.transaction().remove_properties("abc").commit_transaction()
assert table.properties == {}
```
## Snapshot properties
Optionally, Snapshot properties can be set while writing to a table using `append` or `overwrite` API:
```python
tbl.append(df, snapshot_properties={"abc": "def"})
# or
tbl.overwrite(df, snapshot_properties={"abc": "def"})
assert tbl.metadata.snapshots[-1].summary["abc"] == "def"
```
## Snapshot Management
Manage snapshots with operations through the `Table` API:
```python
# To run a specific operation
table.manage_snapshots().create_tag(snapshot_id, "tag123").commit()
# To run multiple operations
table.manage_snapshots()
.create_tag(snapshot_id1, "tag123")
.create_tag(snapshot_id2, "tag456")
.commit()
# Operations are applied on commit.
```
You can also use context managers to make more changes:
```python
with table.manage_snapshots() as ms:
ms.create_branch(snapshot_id1, "Branch_A").create_tag(snapshot_id2, "tag789")
```
## Table Maintenance
PyIceberg provides table maintenance operations through the `table.maintenance` API. This provides a clean interface for performing maintenance tasks like snapshot expiration.
### Snapshot Expiration
Expire old snapshots to clean up table metadata and reduce storage costs:
```python
# Expire snapshots older than three days
from datetime import datetime, timedelta
table.maintenance.expire_snapshots().older_than(
datetime.now() - timedelta(days=3)
).commit()
# Expire a specific snapshot by ID
table.maintenance.expire_snapshots().by_id(12345).commit()
# Context manager usage (recommended for multiple operations)
with table.maintenance.expire_snapshots() as expire:
expire.by_id(12345)
expire.by_id(67890)
# Automatically commits when exiting the context
```
#### Real-world Example
```python
def cleanup_old_snapshots(table_name: str, snapshot_ids: list[int]):
"""Remove specific snapshots from a table."""
catalog = load_catalog("production")
table = catalog.load_table(table_name)
# Use context manager for safe transaction handling
with table.maintenance.expire_snapshots() as expire:
for snapshot_id in snapshot_ids:
expire.by_id(snapshot_id)
print(f"Expired {len(snapshot_ids)} snapshots from {table_name}")
# Usage
cleanup_old_snapshots("analytics.user_events", [12345, 67890, 11111])
```
## Views
PyIceberg supports view operations.
### Check if a view exists
```python
from pyiceberg.catalog import load_catalog
catalog = load_catalog("default")
catalog.view_exists("default.bar")
```
## Table Statistics Management
Manage table statistics with operations through the `Table` API:
```python
# To run a specific operation
table.update_statistics().set_statistics(statistics_file=statistics_file).commit()
# To run multiple operations
table.update_statistics()
.set_statistics(statistics_file1)
.remove_statistics(snapshot_id2)
.commit()
# Operations are applied on commit.
```
You can also use context managers to make more changes:
```python
with table.update_statistics() as update:
update.set_statistics(statistics_file)
update.remove_statistics(snapshot_id2)
```
## Query the data
To query a table, a table scan is needed. A table scan accepts a filter, columns, optionally a limit and a snapshot ID:
```python
from pyiceberg.catalog import load_catalog
from pyiceberg.expressions import GreaterThanOrEqual
catalog = load_catalog("default")
table = catalog.load_table("nyc.taxis")
scan = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
limit=100,
)
# Or filter using a string predicate
scan = table.scan(
row_filter="trip_distance > 10.0",
)
[task.file.file_path for task in scan.plan_files()]
```
The low level API `plan_files` methods returns a set of tasks that provide the files that might contain matching rows:
```json
[
"s3://warehouse/wh/nyc/taxis/data/00003-4-42464649-92dd-41ad-b83b-dea1a2fe4b58-00001.parquet"
]
```
In this case it is up to the engine itself to filter the file itself. Below, `to_arrow()` and `to_duckdb()` that already do this for you.
### Apache Arrow
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`pyarrow` to be installed](index.md).
<!-- prettier-ignore-end -->
Using PyIceberg it is filter out data from a huge table and pull it into a PyArrow table:
```python
table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_arrow()
```
This will return a PyArrow table:
```python
pyarrow.Table
VendorID: int64
tpep_pickup_datetime: timestamp[us, tz=+00:00]
tpep_dropoff_datetime: timestamp[us, tz=+00:00]
----
VendorID: [[2,1,2,1,1,...,2,2,2,2,2],[2,1,1,1,2,...,1,1,2,1,2],...,[2,2,2,2,2,...,2,6,6,2,2],[2,2,2,2,2,...,2,2,2,2,2]]
tpep_pickup_datetime: [[2021-04-01 00:28:05.000000,...,2021-04-30 23:44:25.000000]]
tpep_dropoff_datetime: [[2021-04-01 00:47:59.000000,...,2021-05-01 00:14:47.000000]]
```
This will only pull in the files that that might contain matching rows.
One can also return a PyArrow RecordBatchReader, if reading one record batch at a time is preferred:
```python
table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_arrow_batch_reader()
```
### Pandas
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`pandas` to be installed](index.md).
<!-- prettier-ignore-end -->
PyIceberg makes it easy to filter out data from a huge table and pull it into a Pandas dataframe locally. This will only fetch the relevant Parquet files for the query and apply the filter. This will reduce IO and therefore improve performance and reduce cost.
```python
table.scan(
row_filter="trip_distance >= 10.0",
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_pandas()
```
This will return a Pandas dataframe:
```python
VendorID tpep_pickup_datetime tpep_dropoff_datetime
0 2 2021-04-01 00:28:05+00:00 2021-04-01 00:47:59+00:00
1 1 2021-04-01 00:39:01+00:00 2021-04-01 00:57:39+00:00
2 2 2021-04-01 00:14:42+00:00 2021-04-01 00:42:59+00:00
3 1 2021-04-01 00:17:17+00:00 2021-04-01 00:43:38+00:00
4 1 2021-04-01 00:24:04+00:00 2021-04-01 00:56:20+00:00
... ... ... ...
116976 2 2021-04-30 23:56:18+00:00 2021-05-01 00:29:13+00:00
116977 2 2021-04-30 23:07:41+00:00 2021-04-30 23:37:18+00:00
116978 2 2021-04-30 23:38:28+00:00 2021-05-01 00:12:04+00:00
116979 2 2021-04-30 23:33:00+00:00 2021-04-30 23:59:00+00:00
116980 2 2021-04-30 23:44:25+00:00 2021-05-01 00:14:47+00:00
[116981 rows x 3 columns]
```
It is recommended to use Pandas 2 or later, because it stores the data in an [Apache Arrow backend](https://datapythonista.me/blog/pandas-20-and-the-arrow-revolution-part-i) which avoids copies of data.
### DuckDB
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [DuckDB to be installed](index.md).
<!-- prettier-ignore-end -->
A table scan can also be converted into a in-memory DuckDB table:
```python
con = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_duckdb(table_name="distant_taxi_trips")
```
Using the cursor that we can run queries on the DuckDB table:
```python
print(
con.execute(
"SELECT tpep_dropoff_datetime - tpep_pickup_datetime AS duration FROM distant_taxi_trips LIMIT 4"
).fetchall()
)
[
(datetime.timedelta(seconds=1194),),
(datetime.timedelta(seconds=1118),),
(datetime.timedelta(seconds=1697),),
(datetime.timedelta(seconds=1581),),
]
```
### Ray
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [Ray to be installed](index.md).
<!-- prettier-ignore-end -->
A table scan can also be converted into a Ray dataset:
```python
ray_dataset = table.scan(
row_filter=GreaterThanOrEqual("trip_distance", 10.0),
selected_fields=("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"),
).to_ray()
```
This will return a Ray dataset:
```python
Dataset(
num_blocks=1,
num_rows=1168798,
schema={
VendorID: int64,
tpep_pickup_datetime: timestamp[us, tz=UTC],
tpep_dropoff_datetime: timestamp[us, tz=UTC]
}
)
```
Using [Ray Dataset API](https://docs.ray.io/en/latest/data/api/dataset.html) to interact with the dataset:
```python
print(ray_dataset.take(2))
[
{
"VendorID": 2,
"tpep_pickup_datetime": datetime.datetime(2008, 12, 31, 23, 23, 50),
"tpep_dropoff_datetime": datetime.datetime(2009, 1, 1, 0, 34, 31),
},
{
"VendorID": 2,
"tpep_pickup_datetime": datetime.datetime(2008, 12, 31, 23, 5, 3),
"tpep_dropoff_datetime": datetime.datetime(2009, 1, 1, 16, 10, 18),
},
]
```
### Bodo
PyIceberg interfaces closely with Bodo Dataframes (see [Bodo Iceberg Quick Start](https://docs.bodo.ai/latest/quick_start/quickstart_local_iceberg/)),
which provides a drop-in replacement for Pandas that applies query, compiler and HPC optimizations automatically.
Bodo accelerates and scales Python code from single laptops to large clusters without code rewrites.
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`bodo` to be installed](index.md).
```python
pip install pyiceberg['bodo']
```
<!-- prettier-ignore-end -->
A table can be read easily into a Bodo Dataframe to perform Pandas operations:
```python
df = table.to_bodo() # equivalent to `bodo.pandas.read_iceberg_table(table)`
df = df[df["trip_distance"] >= 10.0]
df = df[["VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime"]]
print(df)
```
This creates a lazy query, optimizes it, and runs it on all available cores (print triggers execution):
```python
VendorID tpep_pickup_datetime tpep_dropoff_datetime
0 2 2023-01-01 00:27:12 2023-01-01 00:49:56
1 2 2023-01-01 00:09:29 2023-01-01 00:29:23
2 1 2023-01-01 00:13:30 2023-01-01 00:44:00
3 2 2023-01-01 00:41:41 2023-01-01 01:19:32
4 2 2023-01-01 00:22:39 2023-01-01 01:30:45
... ... ... ...
245478 2 2023-01-31 22:32:57 2023-01-31 23:01:48
245479 2 2023-01-31 22:03:26 2023-01-31 22:46:13
245480 2 2023-01-31 23:25:56 2023-02-01 00:05:42
245481 2 2023-01-31 23:18:00 2023-01-31 23:46:00
245482 2 2023-01-31 23:18:00 2023-01-31 23:41:00
[245483 rows x 3 columns]
```
Bodo is optimized to take advantage of Iceberg features such as hidden partitioning and various statistics for efficient reads.
### Daft
PyIceberg interfaces closely with Daft Dataframes (see also: [Daft integration with Iceberg](https://docs.daft.ai/en/stable/io/iceberg/)) which provides a full lazily optimized query engine interface on top of PyIceberg tables.
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [Daft to be installed](index.md).
<!-- prettier-ignore-end -->
A table can be read easily into a Daft Dataframe:
```python
df = table.to_daft() # equivalent to `daft.read_iceberg(table)`
df = df.where(df["trip_distance"] >= 10.0)
df = df.select("VendorID", "tpep_pickup_datetime", "tpep_dropoff_datetime")
```
This returns a Daft Dataframe which is lazily materialized. Printing `df` will display the schema:
```python
╭──────────┬───────────────────────────────┬───────────────────────────────╮
│ VendorID ┆ tpep_pickup_datetime ┆ tpep_dropoff_datetime │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Timestamp(Microseconds, None) ┆ Timestamp(Microseconds, None) │
╰──────────┴───────────────────────────────┴───────────────────────────────╯
(No data to display: Dataframe not materialized)
```
We can execute the Dataframe to preview the first few rows of the query with `df.show()`.
This is correctly optimized to take advantage of Iceberg features such as hidden partitioning and file-level statistics for efficient reads.
```python
df.show(2)
```
```python
╭──────────┬───────────────────────────────┬───────────────────────────────╮
│ VendorID ┆ tpep_pickup_datetime ┆ tpep_dropoff_datetime │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Timestamp(Microseconds, None) ┆ Timestamp(Microseconds, None) │
╞══════════╪═══════════════════════════════╪═══════════════════════════════╡
│ 2 ┆ 2008-12-31T23:23:50.000000 ┆ 2009-01-01T00:34:31.000000 │
├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ 2008-12-31T23:05:03.000000 ┆ 2009-01-01T16:10:18.000000 │
╰──────────┴───────────────────────────────┴───────────────────────────────╯
(Showing first 2 rows)
```
### Polars
PyIceberg interfaces closely with Polars Dataframes and LazyFrame which provides a full lazily optimized query engine interface on top of PyIceberg tables.
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`polars` to be installed](index.md).
```python
pip install pyiceberg['polars']
```
<!-- prettier-ignore-end -->
PyIceberg data can be analyzed and accessed through Polars using either DataFrame or LazyFrame.
If your code utilizes the Apache Iceberg data scanning and retrieval API and then analyzes the resulting DataFrame in Polars, use the `table.scan().to_polars()` API.
If the intent is to utilize Polars' high-performance filtering and retrieval functionalities, use LazyFrame exported from the Iceberg table with the `table.to_polars()` API.
```python
# Get LazyFrame
iceberg_table.to_polars()
# Get Data Frame
iceberg_table.scan().to_polars()
```
#### Working with Polars DataFrame
PyIceberg makes it easy to filter out data from a huge table and pull it into a Polars dataframe locally. This will only fetch the relevant Parquet files for the query and apply the filter. This will reduce IO and therefore improve performance and reduce cost.
```python
schema = Schema(
NestedField(field_id=1, name='ticket_id', field_type=LongType(), required=True),
NestedField(field_id=2, name='customer_id', field_type=LongType(), required=True),
NestedField(field_id=3, name='issue', field_type=StringType(), required=False),
NestedField(field_id=4, name='created_at', field_type=TimestampType(), required=True),
required=True
)
iceberg_table = catalog.create_table(
identifier='default.product_support_issues',
schema=schema
)
pa_table_data = pa.Table.from_pylist(
[
{'ticket_id': 1, 'customer_id': 546, 'issue': 'User Login issue', 'created_at': 1650020000000000},
{'ticket_id': 2, 'customer_id': 547, 'issue': 'Payment not going through', 'created_at': 1650028640000000},
{'ticket_id': 3, 'customer_id': 548, 'issue': 'Error on checkout', 'created_at': 1650037280000000},
{'ticket_id': 4, 'customer_id': 549, 'issue': 'Unable to reset password', 'created_at': 1650045920000000},
{'ticket_id': 5, 'customer_id': 550, 'issue': 'Account locked', 'created_at': 1650054560000000},
{'ticket_id': 6, 'customer_id': 551, 'issue': 'Order not received', 'created_at': 1650063200000000},
{'ticket_id': 7, 'customer_id': 552, 'issue': 'Refund not processed', 'created_at': 1650071840000000},
{'ticket_id': 8, 'customer_id': 553, 'issue': 'Shipping address issue', 'created_at': 1650080480000000},
{'ticket_id': 9, 'customer_id': 554, 'issue': 'Product damaged', 'created_at': 1650089120000000},
{'ticket_id': 10, 'customer_id': 555, 'issue': 'Unable to apply discount code', 'created_at': 1650097760000000},
{'ticket_id': 11, 'customer_id': 556, 'issue': 'Website not loading', 'created_at': 1650106400000000},
{'ticket_id': 12, 'customer_id': 557, 'issue': 'Incorrect order received', 'created_at': 1650115040000000},
{'ticket_id': 13, 'customer_id': 558, 'issue': 'Unable to track order', 'created_at': 1650123680000000},
{'ticket_id': 14, 'customer_id': 559, 'issue': 'Order delayed', 'created_at': 1650132320000000},
{'ticket_id': 15, 'customer_id': 560, 'issue': 'Product not as described', 'created_at': 1650140960000000},
{'ticket_id': 16, 'customer_id': 561, 'issue': 'Unable to contact support', 'created_at': 1650149600000000},
{'ticket_id': 17, 'customer_id': 562, 'issue': 'Duplicate charge', 'created_at': 1650158240000000},
{'ticket_id': 18, 'customer_id': 563, 'issue': 'Unable to update profile', 'created_at': 1650166880000000},
{'ticket_id': 19, 'customer_id': 564, 'issue': 'App crashing', 'created_at': 1650175520000000},
{'ticket_id': 20, 'customer_id': 565, 'issue': 'Unable to download invoice', 'created_at': 1650184160000000},
{'ticket_id': 21, 'customer_id': 566, 'issue': 'Incorrect billing amount', 'created_at': 1650192800000000},
], schema=iceberg_table.schema().as_arrow()
)
iceberg_table.append(
df=pa_table_data
)
table.scan(
row_filter="ticket_id > 10",
).to_polars()
```
This will return a Polars DataFrame:
```python
shape: (11, 4)
┌───────────┬─────────────┬────────────────────────────┬─────────────────────┐
│ ticket_id ┆ customer_id ┆ issue ┆ created_at │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ datetime[μs] │
╞═══════════╪═════════════╪════════════════════════════╪═════════════════════╡
│ 11 ┆ 556 ┆ Website not loading ┆ 2022-04-16 10:53:20 │
│ 12 ┆ 557 ┆ Incorrect order received ┆ 2022-04-16 13:17:20 │
│ 13 ┆ 558 ┆ Unable to track order ┆ 2022-04-16 15:41:20 │
│ 14 ┆ 559 ┆ Order delayed ┆ 2022-04-16 18:05:20 │
│ 15 ┆ 560 ┆ Product not as described ┆ 2022-04-16 20:29:20 │
│ … ┆ … ┆ … ┆ … │
│ 17 ┆ 562 ┆ Duplicate charge ┆ 2022-04-17 01:17:20 │
│ 18 ┆ 563 ┆ Unable to update profile ┆ 2022-04-17 03:41:20 │
│ 19 ┆ 564 ┆ App crashing ┆ 2022-04-17 06:05:20 │
│ 20 ┆ 565 ┆ Unable to download invoice ┆ 2022-04-17 08:29:20 │
│ 21 ┆ 566 ┆ Incorrect billing amount ┆ 2022-04-17 10:53:20 │
└───────────┴─────────────┴────────────────────────────┴─────────────────────┘
```
#### Working with Polars LazyFrame
PyIceberg supports creation of a Polars LazyFrame based on an Iceberg Table.
using the above code example:
```python
lf = iceberg_table.to_polars().filter(pl.col("ticket_id") > 10)
print(lf.collect())
```
This above code snippet returns a Polars LazyFrame and defines a filter to be executed by Polars:
```python
shape: (11, 4)
┌───────────┬─────────────┬────────────────────────────┬─────────────────────┐
│ ticket_id ┆ customer_id ┆ issue ┆ created_at │
│ --- ┆ --- ┆ --- ┆ --- │
│ i64 ┆ i64 ┆ str ┆ datetime[μs] │
╞═══════════╪═════════════╪════════════════════════════╪═════════════════════╡
│ 11 ┆ 556 ┆ Website not loading ┆ 2022-04-16 10:53:20 │
│ 12 ┆ 557 ┆ Incorrect order received ┆ 2022-04-16 13:17:20 │
│ 13 ┆ 558 ┆ Unable to track order ┆ 2022-04-16 15:41:20 │
│ 14 ┆ 559 ┆ Order delayed ┆ 2022-04-16 18:05:20 │
│ 15 ┆ 560 ┆ Product not as described ┆ 2022-04-16 20:29:20 │
│ … ┆ … ┆ … ┆ … │
│ 17 ┆ 562 ┆ Duplicate charge ┆ 2022-04-17 01:17:20 │
│ 18 ┆ 563 ┆ Unable to update profile ┆ 2022-04-17 03:41:20 │
│ 19 ┆ 564 ┆ App crashing ┆ 2022-04-17 06:05:20 │
│ 20 ┆ 565 ┆ Unable to download invoice ┆ 2022-04-17 08:29:20 │
│ 21 ┆ 566 ┆ Incorrect billing amount ┆ 2022-04-17 10:53:20 │
└───────────┴─────────────┴────────────────────────────┴─────────────────────┘
```
### Apache DataFusion
PyIceberg integrates with [Apache DataFusion](https://datafusion.apache.org/) through the Custom Table Provider interface ([FFI_TableProvider](https://datafusion.apache.org/python/user-guide/io/table_provider.html)) exposed through `iceberg-rust`.
<!-- prettier-ignore-start -->
!!! note "Requirements"
This requires [`datafusion` to be installed](index.md).
<!-- prettier-ignore-end -->
<!-- markdownlint-disable MD046 -- Allowing indented multi-line formatting in admonition-->
!!! warning "Experimental Feature"
The DataFusion integration is considered **experimental**.
The integration has a few caveats:
- Only works with `datafusion >= 45`
- Depends directly on `iceberg-rust` instead of PyIceberg's implementation
- Has limited features compared to the full PyIceberg API
The integration will improve as both DataFusion and `iceberg-rust` matures.
<!-- markdownlint-enable MD046 -->
PyIceberg tables can be registered directly with DataFusion's SessionContext using the table provider interface.
```python
from datafusion import SessionContext
from pyiceberg.catalog import load_catalog
import pyarrow as pa
# Load catalog and create/load a table
catalog = load_catalog("catalog", type="in-memory")
catalog.create_namespace_if_not_exists("default")
# Create some sample data
data = pa.table({"x": [1, 2, 3], "y": [4, 5, 6]})
iceberg_table = catalog.create_table("default.test", schema=data.schema)
iceberg_table.append(data)
# Register the table with DataFusion
ctx = SessionContext()
ctx.register_table_provider("test", iceberg_table)
# Query the table using DataFusion SQL
ctx.table("test").show()
```
This will output:
```python
DataFrame()
+---+---+
| x | y |
+---+---+
| 1 | 4 |
| 2 | 5 |
| 3 | 6 |
+---+---+
```