| commit | 68a656b01650cfcd8c099dd04cea59fb083dca69 | [log] [tgz] |
|---|---|---|
| author | wangxianghu <wxhjsxz@126.com> | Sun Jun 21 22:34:47 2020 +0800 |
| committer | GitHub <noreply@github.com> | Sun Jun 21 07:34:47 2020 -0700 |
| tree | 200b0a5620b76d883c73171b6cb30f376fd4335d | |
| parent | 8a9fdd603e3e532ea5252b98205acfb8aa648795 [diff] |
[HUDI-1032] Remove unused code in HoodieCopyOnWriteTable and code clean (#1750)
Apache Hudi (pronounced Hoodie) stands for Hadoop Upserts Deletes and Incrementals. Hudi manages the storage of large analytical datasets on DFS (Cloud stores, HDFS or any Hadoop FileSystem compatible storage).
Hudi supports three types of queries:
Learn more about Hudi at https://hudi.apache.org
Prerequisites for building Apache Hudi:
# Checkout code and build git clone https://github.com/apache/hudi.git && cd hudi mvn clean package -DskipTests -DskipITs # Start command spark-2.4.4-bin-hadoop2.7/bin/spark-shell \ --jars `ls packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-*.*.*-SNAPSHOT.jar` \ --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
To build the Javadoc for all Java and Scala classes:
# Javadoc generated under target/site/apidocs mvn clean javadoc:aggregate -Pjavadocs
The default Scala version supported is 2.11. To build for Scala 2.12 version, build using scala-2.12 profile
mvn clean package -DskipTests -DskipITs -Dscala-2.12
The default hudi-jar bundles spark-avro module. To build without spark-avro module, build using spark-shade-unbundle-avro profile
# Checkout code and build git clone https://github.com/apache/hudi.git && cd hudi mvn clean package -DskipTests -DskipITs -Pspark-shade-unbundle-avro # Start command spark-2.4.4-bin-hadoop2.7/bin/spark-shell \ --packages org.apache.spark:spark-avro_2.11:2.4.4 \ --jars `ls packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-*.*.*-SNAPSHOT.jar` \ --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
Please visit https://hudi.apache.org/docs/quick-start-guide.html to quickly explore Hudi's capabilities using spark-shell.