blob: a32a802a1d431428b2306f7fb4a32e74984ba10d [file] [log] [blame]
/* ====================================================================
* Copyright (c) 1995-1999 The Apache Group. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the Apache Group
* for use in the Apache HTTP server project (http://www.apache.org/)."
*
* 4. The names "Apache Server" and "Apache Group" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Group.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the Apache Group
* for use in the Apache HTTP server project (http://www.apache.org/)."
*
* THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE GROUP OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Group and was originally based
* on public domain software written at the National Center for
* Supercomputing Applications, University of Illinois, Urbana-Champaign.
* For more information on the Apache Group and the Apache HTTP server
* project, please see <http://www.apache.org/>.
*
*/
#define CORE_PRIVATE
#include "httpd.h"
#include "mpm_default.h"
#include "http_main.h"
#include "http_log.h"
#include "http_config.h"
#include "http_core.h" /* for get_remote_host */
#include "http_connection.h"
#include "scoreboard.h"
#include "ap_mpm.h"
#include "ap_listen.h"
#include "iol_socket.h"
#define INCL_DOS
#define INCL_DOSERRORS
#include <os2.h>
#include <stdlib.h>
/* config globals */
static int ap_max_requests_per_child=0;
static char *ap_pid_fname=NULL;
static int ap_daemons_to_start=0;
static int ap_daemons_min_free=0;
static int ap_daemons_max_free=0;
static int ap_daemons_limit=0;
static time_t ap_restart_time=0;
static int ap_extended_status = 0;
/*
* The max child slot ever assigned, preserved across restarts. Necessary
* to deal with MaxClients changes across SIGUSR1 restarts. We use this
* value to optimize routines that have to scan the entire scoreboard.
*/
static int max_daemons_limit = -1;
static char ap_coredump_dir[MAX_STRING_LEN];
/* *Non*-shared http_main globals... */
static server_rec *server_conf;
static fd_set listenfds;
static int listenmaxfd;
/* one_process --- debugging mode variable; can be set from the command line
* with the -X flag. If set, this gets you the child_main loop running
* in the process which originally started up (no detach, no make_child),
* which is a pretty nice debugging environment. (You'll get a SIGHUP
* early in standalone_main; just continue through. This is the server
* trying to kill off any child processes which it might have lying
* around --- Apache doesn't keep track of their pids, it just sends
* SIGHUP to the process group, ignoring it in the root process.
* Continue through and you'll be fine.).
*/
static int one_process = 0;
#ifdef HAS_OTHER_CHILD
/* used to maintain list of children which aren't part of the scoreboard */
typedef struct other_child_rec other_child_rec;
struct other_child_rec {
other_child_rec *next;
int pid;
void (*maintenance) (int, void *, ap_wait_t);
void *data;
int write_fd;
};
static other_child_rec *other_children;
#endif
static pool *pconf; /* Pool for config stuff */
static scoreboard *ap_scoreboard_image = NULL;
struct thread_globals {
int child_num;
pool *pchild; /* Pool for httpd child stuff */
int usr1_just_die;
};
static struct thread_globals **ppthread_globals = NULL;
#define THREAD_GLOBAL(gvar) ((*ppthread_globals)->gvar)
void reinit_scoreboard(pool *p)
{
if (ap_scoreboard_image == NULL) {
ap_scoreboard_image = (scoreboard *) malloc(SCOREBOARD_SIZE);
if (ap_scoreboard_image == NULL) {
fprintf(stderr, "Ouch! Out of memory reiniting scoreboard!\n");
}
}
memset(ap_scoreboard_image, 0, SCOREBOARD_SIZE);
}
void cleanup_scoreboard(void)
{
ap_assert(ap_scoreboard_image);
free(ap_scoreboard_image);
ap_scoreboard_image = NULL;
}
/* a clean exit from a child with proper cleanup */
static void clean_child_exit(int code)
{
if (THREAD_GLOBAL(pchild)) {
ap_destroy_pool(THREAD_GLOBAL(pchild));
}
ap_scoreboard_image->servers[THREAD_GLOBAL(child_num)].thread_retval = code;
_endthread();
}
#if defined(USE_OS2SEM_SERIALIZED_ACCEPT)
static HMTX lock_sem = -1;
static void accept_mutex_cleanup(void *foo)
{
DosReleaseMutexSem(lock_sem);
DosCloseMutexSem(lock_sem);
}
/*
* Initialize mutex lock.
* Done by each child at it's birth
*/
static void accept_mutex_child_init(pool *p)
{
int rc = DosOpenMutexSem(NULL, &lock_sem);
if (rc != 0) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
"Child cannot open lock semaphore, rc=%d", rc);
clean_child_exit(APEXIT_CHILDINIT);
} else {
ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
}
}
/*
* Initialize mutex lock.
* Must be safe to call this on a restart.
*/
static void accept_mutex_init(pool *p)
{
int rc = DosCreateMutexSem(NULL, &lock_sem, DC_SEM_SHARED, FALSE);
if (rc != 0) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
"Parent cannot create lock semaphore, rc=%d", rc);
exit(APEXIT_INIT);
}
ap_register_cleanup(p, NULL, accept_mutex_cleanup, ap_null_cleanup);
}
static void accept_mutex_on(void)
{
int rc = DosRequestMutexSem(lock_sem, SEM_INDEFINITE_WAIT);
if (rc != 0) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
"OS2SEM: Error %d getting accept lock. Exiting!", rc);
clean_child_exit(APEXIT_CHILDFATAL);
}
}
static void accept_mutex_off(void)
{
int rc = DosReleaseMutexSem(lock_sem);
if (rc != 0) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_EMERG, server_conf,
"OS2SEM: Error %d freeing accept lock. Exiting!", rc);
clean_child_exit(APEXIT_CHILDFATAL);
}
}
#endif
/* On some architectures it's safe to do unserialized accept()s in the single
* Listen case. But it's never safe to do it in the case where there's
* multiple Listen statements. Define SINGLE_LISTEN_UNSERIALIZED_ACCEPT
* when it's safe in the single Listen case.
*/
#ifdef SINGLE_LISTEN_UNSERIALIZED_ACCEPT
#define SAFE_ACCEPT(stmt) do {if (ap_listeners->next) {stmt;}} while(0)
#else
#define SAFE_ACCEPT(stmt) do {stmt;} while(0)
#endif
/*****************************************************************
* dealing with other children
*/
#ifdef HAS_OTHER_CHILD
API_EXPORT(void) ap_register_other_child(int pid,
void (*maintenance) (int reason, void *, ap_wait_t status),
void *data, int write_fd)
{
other_child_rec *ocr;
ocr = ap_palloc(pconf, sizeof(*ocr));
ocr->pid = pid;
ocr->maintenance = maintenance;
ocr->data = data;
ocr->write_fd = write_fd;
ocr->next = other_children;
other_children = ocr;
}
/* note that since this can be called by a maintenance function while we're
* scanning the other_children list, all scanners should protect themself
* by loading ocr->next before calling any maintenance function.
*/
API_EXPORT(void) ap_unregister_other_child(void *data)
{
other_child_rec **pocr, *nocr;
for (pocr = &other_children; *pocr; pocr = &(*pocr)->next) {
if ((*pocr)->data == data) {
nocr = (*pocr)->next;
(*(*pocr)->maintenance) (OC_REASON_UNREGISTER, (*pocr)->data, -1);
*pocr = nocr;
/* XXX: um, well we've just wasted some space in pconf ? */
return;
}
}
}
/* test to ensure that the write_fds are all still writable, otherwise
* invoke the maintenance functions as appropriate */
static void probe_writable_fds(void)
{
fd_set writable_fds;
int fd_max;
other_child_rec *ocr, *nocr;
struct timeval tv;
int rc;
if (other_children == NULL)
return;
fd_max = 0;
FD_ZERO(&writable_fds);
do {
for (ocr = other_children; ocr; ocr = ocr->next) {
if (ocr->write_fd == -1)
continue;
FD_SET(ocr->write_fd, &writable_fds);
if (ocr->write_fd > fd_max) {
fd_max = ocr->write_fd;
}
}
if (fd_max == 0)
return;
tv.tv_sec = 0;
tv.tv_usec = 0;
rc = ap_select(fd_max + 1, NULL, &writable_fds, NULL, &tv);
} while (rc == -1 && errno == EINTR);
if (rc == -1) {
/* XXX: uhh this could be really bad, we could have a bad file
* descriptor due to a bug in one of the maintenance routines */
ap_log_unixerr("probe_writable_fds", "select",
"could not probe writable fds", server_conf);
return;
}
if (rc == 0)
return;
for (ocr = other_children; ocr; ocr = nocr) {
nocr = ocr->next;
if (ocr->write_fd == -1)
continue;
if (FD_ISSET(ocr->write_fd, &writable_fds))
continue;
(*ocr->maintenance) (OC_REASON_UNWRITABLE, ocr->data, -1);
}
}
/* possibly reap an other_child, return 0 if yes, -1 if not */
static int reap_other_child(int pid, ap_wait_t status)
{
other_child_rec *ocr, *nocr;
for (ocr = other_children; ocr; ocr = nocr) {
nocr = ocr->next;
if (ocr->pid != pid)
continue;
ocr->pid = -1;
(*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
return 0;
}
return -1;
}
#endif
API_EXPORT(int) ap_exists_scoreboard_image(void)
{
return (ap_scoreboard_image ? 1 : 0);
}
int ap_update_child_status(int child_num, int status, request_rec *r)
{
int old_status;
short_score *ss;
if (child_num < 0)
return -1;
ap_check_signals();
ss = &ap_scoreboard_image->servers[child_num];
old_status = ss->status;
ss->status = status;
if (ap_extended_status) {
if (status == SERVER_READY || status == SERVER_DEAD) {
/*
* Reset individual counters
*/
if (status == SERVER_DEAD) {
ss->my_access_count = 0L;
ss->my_bytes_served = 0L;
}
ss->conn_count = (unsigned short) 0;
ss->conn_bytes = (unsigned long) 0;
}
if (r) {
conn_rec *c = r->connection;
ap_cpystrn(ss->client, ap_get_remote_host(c, r->per_dir_config,
REMOTE_NOLOOKUP), sizeof(ss->client));
if (r->the_request == NULL) {
ap_cpystrn(ss->request, "NULL", sizeof(ss->request));
} else if (r->parsed_uri.password == NULL) {
ap_cpystrn(ss->request, r->the_request, sizeof(ss->request));
} else {
/* Don't reveal the password in the server-status view */
ap_cpystrn(ss->request, ap_pstrcat(r->pool, r->method, " ",
ap_unparse_uri_components(r->pool, &r->parsed_uri, UNP_OMITPASSWORD),
r->assbackwards ? NULL : " ", r->protocol, NULL),
sizeof(ss->request));
}
ss->vhostrec = r->server;
}
}
if (status == SERVER_STARTING && r == NULL) {
/* clean up the slot's vhostrec pointer (maybe re-used)
* and mark the slot as belonging to a new generation.
*/
ss->vhostrec = NULL;
ap_scoreboard_image->parent[child_num].generation = ap_scoreboard_image->global.running_generation;
}
return old_status;
}
void ap_time_process_request(int child_num, int status)
{
short_score *ss;
#if defined(NO_GETTIMEOFDAY) && !defined(NO_TIMES)
struct tms tms_blk;
#endif
if (child_num < 0)
return;
ss = &ap_scoreboard_image->servers[child_num];
if (status == START_PREQUEST) {
#if defined(NO_GETTIMEOFDAY)
#ifndef NO_TIMES
if ((ss->start_time = times(&tms_blk)) == -1)
#endif /* NO_TIMES */
ss->start_time = (clock_t) 0;
#else
if (gettimeofday(&ss->start_time, (struct timezone *) 0) < 0)
ss->start_time.tv_sec =
ss->start_time.tv_usec = 0L;
#endif
}
else if (status == STOP_PREQUEST) {
#if defined(NO_GETTIMEOFDAY)
#ifndef NO_TIMES
if ((ss->stop_time = times(&tms_blk)) == -1)
#endif
ss->stop_time = ss->start_time = (clock_t) 0;
#else
if (gettimeofday(&ss->stop_time, (struct timezone *) 0) < 0)
ss->stop_time.tv_sec =
ss->stop_time.tv_usec =
ss->start_time.tv_sec =
ss->start_time.tv_usec = 0L;
#endif
}
}
/* TODO: call me some time */
static void increment_counts(int child_num, request_rec *r)
{
long int bs = 0;
short_score *ss;
ss = &ap_scoreboard_image->servers[child_num];
if (r->sent_bodyct)
ap_bgetopt(r->connection->client, BO_BYTECT, &bs);
#ifndef NO_TIMES
times(&ss->times);
#endif
ss->access_count++;
ss->my_access_count++;
ss->conn_count++;
ss->bytes_served += (unsigned long) bs;
ss->my_bytes_served += (unsigned long) bs;
ss->conn_bytes += (unsigned long) bs;
}
static int find_child_by_tid(int tid)
{
int i;
for (i = 0; i < max_daemons_limit; ++i)
if (ap_scoreboard_image->parent[i].tid == tid)
return i;
return -1;
}
/* Finally, this routine is used by the caretaker thread to wait for
* a while...
*/
/* number of calls to wait_or_timeout between writable probes */
#ifndef INTERVAL_OF_WRITABLE_PROBES
#define INTERVAL_OF_WRITABLE_PROBES 10
#endif
static int wait_or_timeout_counter;
static int wait_or_timeout(ap_wait_t *status)
{
int ret;
ULONG tid;
++wait_or_timeout_counter;
if (wait_or_timeout_counter == INTERVAL_OF_WRITABLE_PROBES) {
wait_or_timeout_counter = 0;
#ifdef HAS_OTHER_CHILD
probe_writable_fds();
#endif
}
tid = 0;
ret = DosWaitThread(&tid, DCWW_NOWAIT);
if (ret == 0) {
int child_num = find_child_by_tid(tid);
ap_assert( child_num > 0 );
*status = ap_scoreboard_image->servers[child_num].thread_retval;
return tid;
}
DosSleep(SCOREBOARD_MAINTENANCE_INTERVAL / 1000);
return -1;
}
#if defined(NSIG)
#define NumSIG NSIG
#elif defined(_NSIG)
#define NumSIG _NSIG
#elif defined(__NSIG)
#define NumSIG __NSIG
#else
#define NumSIG 32 /* for 1998's unixes, this is still a good assumption */
#endif
#ifdef SYS_SIGLIST /* platform has sys_siglist[] */
#define INIT_SIGLIST() /*nothing*/
#else /* platform has no sys_siglist[], define our own */
#define SYS_SIGLIST ap_sys_siglist
#define INIT_SIGLIST() siglist_init();
const char *ap_sys_siglist[NumSIG];
static void siglist_init(void)
{
int sig;
ap_sys_siglist[0] = "Signal 0";
#ifdef SIGHUP
ap_sys_siglist[SIGHUP] = "Hangup";
#endif
#ifdef SIGINT
ap_sys_siglist[SIGINT] = "Interrupt";
#endif
#ifdef SIGQUIT
ap_sys_siglist[SIGQUIT] = "Quit";
#endif
#ifdef SIGILL
ap_sys_siglist[SIGILL] = "Illegal instruction";
#endif
#ifdef SIGTRAP
ap_sys_siglist[SIGTRAP] = "Trace/BPT trap";
#endif
#ifdef SIGIOT
ap_sys_siglist[SIGIOT] = "IOT instruction";
#endif
#ifdef SIGABRT
ap_sys_siglist[SIGABRT] = "Abort";
#endif
#ifdef SIGEMT
ap_sys_siglist[SIGEMT] = "Emulator trap";
#endif
#ifdef SIGFPE
ap_sys_siglist[SIGFPE] = "Arithmetic exception";
#endif
#ifdef SIGKILL
ap_sys_siglist[SIGKILL] = "Killed";
#endif
#ifdef SIGBUS
ap_sys_siglist[SIGBUS] = "Bus error";
#endif
#ifdef SIGSEGV
ap_sys_siglist[SIGSEGV] = "Segmentation fault";
#endif
#ifdef SIGSYS
ap_sys_siglist[SIGSYS] = "Bad system call";
#endif
#ifdef SIGPIPE
ap_sys_siglist[SIGPIPE] = "Broken pipe";
#endif
#ifdef SIGALRM
ap_sys_siglist[SIGALRM] = "Alarm clock";
#endif
#ifdef SIGTERM
ap_sys_siglist[SIGTERM] = "Terminated";
#endif
#ifdef SIGUSR1
ap_sys_siglist[SIGUSR1] = "User defined signal 1";
#endif
#ifdef SIGUSR2
ap_sys_siglist[SIGUSR2] = "User defined signal 2";
#endif
#ifdef SIGCLD
ap_sys_siglist[SIGCLD] = "Child status change";
#endif
#ifdef SIGCHLD
ap_sys_siglist[SIGCHLD] = "Child status change";
#endif
#ifdef SIGPWR
ap_sys_siglist[SIGPWR] = "Power-fail restart";
#endif
#ifdef SIGWINCH
ap_sys_siglist[SIGWINCH] = "Window changed";
#endif
#ifdef SIGURG
ap_sys_siglist[SIGURG] = "urgent socket condition";
#endif
#ifdef SIGPOLL
ap_sys_siglist[SIGPOLL] = "Pollable event occurred";
#endif
#ifdef SIGIO
ap_sys_siglist[SIGIO] = "socket I/O possible";
#endif
#ifdef SIGSTOP
ap_sys_siglist[SIGSTOP] = "Stopped (signal)";
#endif
#ifdef SIGTSTP
ap_sys_siglist[SIGTSTP] = "Stopped";
#endif
#ifdef SIGCONT
ap_sys_siglist[SIGCONT] = "Continued";
#endif
#ifdef SIGTTIN
ap_sys_siglist[SIGTTIN] = "Stopped (tty input)";
#endif
#ifdef SIGTTOU
ap_sys_siglist[SIGTTOU] = "Stopped (tty output)";
#endif
#ifdef SIGVTALRM
ap_sys_siglist[SIGVTALRM] = "virtual timer expired";
#endif
#ifdef SIGPROF
ap_sys_siglist[SIGPROF] = "profiling timer expired";
#endif
#ifdef SIGXCPU
ap_sys_siglist[SIGXCPU] = "exceeded cpu limit";
#endif
#ifdef SIGXFSZ
ap_sys_siglist[SIGXFSZ] = "exceeded file size limit";
#endif
for (sig=0; sig < sizeof(ap_sys_siglist)/sizeof(ap_sys_siglist[0]); ++sig)
if (ap_sys_siglist[sig] == NULL)
ap_sys_siglist[sig] = "";
}
#endif /* platform has sys_siglist[] */
/* handle all varieties of core dumping signals */
static void sig_coredump(int sig)
{
chdir(ap_coredump_dir);
signal(sig, SIG_DFL);
kill(getpid(), sig);
/* At this point we've got sig blocked, because we're still inside
* the signal handler. When we leave the signal handler it will
* be unblocked, and we'll take the signal... and coredump or whatever
* is appropriate for this particular Unix. In addition the parent
* will see the real signal we received -- whereas if we called
* abort() here, the parent would only see SIGABRT.
*/
}
/*****************************************************************
* Connection structures and accounting...
*/
static void just_die(int sig)
{
clean_child_exit(0);
}
static void usr1_handler(int sig)
{
if (THREAD_GLOBAL(usr1_just_die)) {
just_die(sig);
}
ap_scoreboard_image->parent[THREAD_GLOBAL(child_num)].deferred_die = 1;
}
/* volatile just in case */
static int volatile shutdown_pending;
static int volatile restart_pending;
static int volatile is_graceful;
static void sig_term(int sig)
{
if (shutdown_pending == 1) {
/* Um, is this _probably_ not an error, if the user has
* tried to do a shutdown twice quickly, so we won't
* worry about reporting it.
*/
return;
}
shutdown_pending = 1;
}
static void restart(int sig)
{
if (restart_pending == 1) {
/* Probably not an error - don't bother reporting it */
return;
}
restart_pending = 1;
is_graceful = sig == SIGUSR1;
}
static void set_signals(void)
{
#ifndef NO_USE_SIGACTION
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (!one_process) {
sa.sa_handler = sig_coredump;
#if defined(SA_ONESHOT)
sa.sa_flags = SA_ONESHOT;
#elif defined(SA_RESETHAND)
sa.sa_flags = SA_RESETHAND;
#endif
if (sigaction(SIGSEGV, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGSEGV)");
#ifdef SIGBUS
if (sigaction(SIGBUS, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGBUS)");
#endif
#ifdef SIGABORT
if (sigaction(SIGABORT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGABORT)");
#endif
#ifdef SIGABRT
if (sigaction(SIGABRT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGABRT)");
#endif
#ifdef SIGILL
if (sigaction(SIGILL, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGILL)");
#endif
sa.sa_flags = 0;
}
sa.sa_handler = sig_term;
if (sigaction(SIGTERM, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGTERM)");
#ifdef SIGINT
if (sigaction(SIGINT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGINT)");
#endif
#ifdef SIGXCPU
sa.sa_handler = SIG_DFL;
if (sigaction(SIGXCPU, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGXCPU)");
#endif
#ifdef SIGXFSZ
sa.sa_handler = SIG_DFL;
if (sigaction(SIGXFSZ, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGXFSZ)");
#endif
#ifdef SIGPIPE
sa.sa_handler = SIG_IGN;
if (sigaction(SIGPIPE, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGPIPE)");
#endif
/* we want to ignore HUPs and USR1 while we're busy processing one */
sigaddset(&sa.sa_mask, SIGHUP);
sigaddset(&sa.sa_mask, SIGUSR1);
sa.sa_handler = restart;
if (sigaction(SIGHUP, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGHUP)");
if (sigaction(SIGUSR1, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGUSR1)");
#else
if (!one_process) {
signal(SIGSEGV, sig_coredump);
#ifdef SIGBUS
signal(SIGBUS, sig_coredump);
#endif /* SIGBUS */
#ifdef SIGABORT
signal(SIGABORT, sig_coredump);
#endif /* SIGABORT */
#ifdef SIGABRT
signal(SIGABRT, sig_coredump);
#endif /* SIGABRT */
#ifdef SIGILL
signal(SIGILL, sig_coredump);
#endif /* SIGILL */
#ifdef SIGXCPU
signal(SIGXCPU, SIG_DFL);
#endif /* SIGXCPU */
#ifdef SIGXFSZ
signal(SIGXFSZ, SIG_DFL);
#endif /* SIGXFSZ */
}
signal(SIGTERM, sig_term);
#ifdef SIGHUP
signal(SIGHUP, restart);
#endif /* SIGHUP */
#ifdef SIGUSR1
signal(SIGUSR1, restart);
#endif /* SIGUSR1 */
#ifdef SIGPIPE
signal(SIGPIPE, SIG_IGN);
#endif /* SIGPIPE */
#endif
}
#if defined(TCP_NODELAY) && !defined(MPE) && !defined(TPF)
static void sock_disable_nagle(int s)
{
/* The Nagle algorithm says that we should delay sending partial
* packets in hopes of getting more data. We don't want to do
* this; we are not telnet. There are bad interactions between
* persistent connections and Nagle's algorithm that have very severe
* performance penalties. (Failing to disable Nagle is not much of a
* problem with simple HTTP.)
*
* In spite of these problems, failure here is not a shooting offense.
*/
int just_say_no = 1;
if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (char *) &just_say_no,
sizeof(int)) < 0) {
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
"setsockopt: (TCP_NODELAY)");
}
}
#else
#define sock_disable_nagle(s) /* NOOP */
#endif
/*****************************************************************
* Child process main loop.
*/
API_EXPORT(void) ap_child_terminate(request_rec *r)
{
r->connection->keepalive = 0;
ap_scoreboard_image->parent[THREAD_GLOBAL(child_num)].deferred_die = 1;
}
int ap_graceful_stop_signalled(void)
{
if (ap_scoreboard_image->parent[THREAD_GLOBAL(child_num)].deferred_die ||
ap_scoreboard_image->global.running_generation != ap_scoreboard_image->parent[THREAD_GLOBAL(child_num)].generation) {
return 1;
}
return 0;
}
static void child_main(void *child_num_arg)
{
NET_SIZE_T clen;
struct sockaddr sa_server;
struct sockaddr sa_client;
ap_listen_rec *lr = NULL;
ap_listen_rec *first_lr = NULL;
pool *ptrans;
conn_rec *current_conn;
ap_iol *iol;
pool *pchild;
parent_score *sc_parent_rec;
int csd = -1, requests_this_child = 0;
fd_set main_fds;
/* Disable the restart signal handlers and enable the just_die stuff.
* Note that since restart() just notes that a restart has been
* requested there's no race condition here.
*/
set_signals(); /* signals aren't inherrited by child threads */
signal(SIGHUP, just_die);
signal(SIGUSR1, just_die);
signal(SIGTERM, just_die);
/* Get a sub pool for global allocations in this child, so that
* we can have cleanups occur when the child exits.
*/
pchild = ap_make_sub_pool(pconf);
*ppthread_globals = (struct thread_globals *)ap_palloc(pchild, sizeof(struct thread_globals));
THREAD_GLOBAL(child_num) = (int)child_num_arg;
sc_parent_rec = ap_scoreboard_image->parent + THREAD_GLOBAL(child_num);
THREAD_GLOBAL(pchild) = pchild;
ptrans = ap_make_sub_pool(pchild);
/* needs to be done before we switch UIDs so we have permissions */
SAFE_ACCEPT(accept_mutex_child_init(pchild));
ap_child_init_hook(pchild, server_conf);
(void) ap_update_child_status(THREAD_GLOBAL(child_num), SERVER_READY, (request_rec *) NULL);
signal(SIGHUP, just_die);
signal(SIGTERM, just_die);
while (!ap_graceful_stop_signalled()) {
BUFF *conn_io;
int srv, sd;
/* Prepare to receive a SIGUSR1 due to graceful restart so that
* we can exit cleanly.
*/
THREAD_GLOBAL(usr1_just_die) = 1;
signal(SIGUSR1, usr1_handler);
/*
* (Re)initialize this child to a pre-connection state.
*/
current_conn = NULL;
ap_clear_pool(ptrans);
if ((ap_max_requests_per_child > 0
&& requests_this_child++ >= ap_max_requests_per_child)) {
clean_child_exit(0);
}
(void) ap_update_child_status(THREAD_GLOBAL(child_num), SERVER_READY, (request_rec *) NULL);
/*
* Wait for an acceptable connection to arrive.
*/
/* Lock around "accept", if necessary */
SAFE_ACCEPT(accept_mutex_on());
for (;;) {
if (ap_listeners->next) {
/* more than one socket */
memcpy(&main_fds, &listenfds, sizeof(fd_set));
srv = ap_select(listenmaxfd + 1, &main_fds, NULL, NULL, NULL);
if (srv < 0 && errno != EINTR) {
/* Single Unix documents select as returning errnos
* EBADF, EINTR, and EINVAL... and in none of those
* cases does it make sense to continue. In fact
* on Linux 2.0.x we seem to end up with EFAULT
* occasionally, and we'd loop forever due to it.
*/
ap_log_error(APLOG_MARK, APLOG_ERR, server_conf, "select: (listen)");
clean_child_exit(1);
}
if (srv <= 0)
continue;
/* we remember the last_lr we searched last time around so that
we don't end up starving any particular listening socket */
if (first_lr == NULL) {
first_lr = ap_listeners;
}
lr = first_lr;
do {
if (!lr) {
lr = ap_listeners;
}
if (FD_ISSET(lr->fd, &main_fds)) {
first_lr = lr->next;
break;
}
lr = lr->next;
} while (lr != first_lr);
if (lr == first_lr) {
continue;
}
sd = lr->fd;
}
else {
/* only one socket, just pretend we did the other stuff */
sd = ap_listeners->fd;
}
/* if we accept() something we don't want to die, so we have to
* defer the exit
*/
THREAD_GLOBAL(usr1_just_die) = 0;
for (;;) {
if (ap_scoreboard_image->parent[THREAD_GLOBAL(child_num)].deferred_die) {
/* we didn't get a socket, and we were told to die */
clean_child_exit(0);
}
clen = sizeof(sa_client);
csd = ap_accept(sd, &sa_client, &clen);
if (csd >= 0 || errno != EINTR)
break;
}
if (csd >= 0)
break; /* We have a socket ready for reading */
else {
/* Our old behaviour here was to continue after accept()
* errors. But this leads us into lots of troubles
* because most of the errors are quite fatal. For
* example, EMFILE can be caused by slow descriptor
* leaks (say in a 3rd party module, or libc). It's
* foolish for us to continue after an EMFILE. We also
* seem to tickle kernel bugs on some platforms which
* lead to never-ending loops here. So it seems best
* to just exit in most cases.
*/
switch (errno) {
#ifdef EPROTO
/* EPROTO on certain older kernels really means
* ECONNABORTED, so we need to ignore it for them.
* See discussion in new-httpd archives nh.9701
* search for EPROTO.
*
* Also see nh.9603, search for EPROTO:
* There is potentially a bug in Solaris 2.x x<6,
* and other boxes that implement tcp sockets in
* userland (i.e. on top of STREAMS). On these
* systems, EPROTO can actually result in a fatal
* loop. See PR#981 for example. It's hard to
* handle both uses of EPROTO.
*/
case EPROTO:
#endif
#ifdef ECONNABORTED
case ECONNABORTED:
#endif
/* Linux generates the rest of these, other tcp
* stacks (i.e. bsd) tend to hide them behind
* getsockopt() interfaces. They occur when
* the net goes sour or the client disconnects
* after the three-way handshake has been done
* in the kernel but before userland has picked
* up the socket.
*/
#ifdef ECONNRESET
case ECONNRESET:
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT:
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH:
#endif
#ifdef ENETUNREACH
case ENETUNREACH:
#endif
break;
default:
ap_log_error(APLOG_MARK, APLOG_ERR, server_conf,
"accept: (client socket)");
clean_child_exit(1);
}
}
if (ap_graceful_stop_signalled()) {
clean_child_exit(0);
}
THREAD_GLOBAL(usr1_just_die) = 1;
}
SAFE_ACCEPT(accept_mutex_off()); /* unlock after "accept" */
/* We've got a socket, let's at least process one request off the
* socket before we accept a graceful restart request. We set
* the signal to ignore because we don't want to disturb any
* third party code.
*/
signal(SIGUSR1, SIG_IGN);
/*
* We now have a connection, so set it up with the appropriate
* socket options, file descriptors, and read/write buffers.
*/
clen = sizeof(sa_server);
if (getsockname(csd, &sa_server, &clen) < 0) {
ap_log_error(APLOG_MARK, APLOG_ERR, server_conf, "getsockname");
close(csd);
continue;
}
sock_disable_nagle(csd);
iol = os2_attach_socket(csd);
if (iol == NULL) {
if (errno == EBADF) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, NULL,
"filedescriptor (%u) larger than FD_SETSIZE (%u) "
"found, you probably need to rebuild Apache with a "
"larger FD_SETSIZE", csd, FD_SETSIZE);
}
else {
ap_log_error(APLOG_MARK, APLOG_WARNING, NULL,
"error attaching to socket");
}
close(csd);
continue;
}
(void) ap_update_child_status(THREAD_GLOBAL(child_num), SERVER_BUSY_READ,
(request_rec *) NULL);
conn_io = ap_bcreate(ptrans, B_RDWR);
ap_bpush_iol(conn_io, iol);
current_conn = ap_new_connection(ptrans, server_conf, conn_io,
(struct sockaddr_in *) &sa_client,
(struct sockaddr_in *) &sa_server);
ap_process_connection(current_conn);
}
clean_child_exit(0);
}
static int make_child(server_rec *s, int slot, time_t now)
{
TID tid;
if (slot + 1 > max_daemons_limit) {
max_daemons_limit = slot + 1;
}
if (one_process) {
struct thread_globals *parent_globals = *ppthread_globals;
signal(SIGHUP, just_die);
signal(SIGINT, just_die);
#ifdef SIGQUIT
signal(SIGQUIT, SIG_DFL);
#endif
signal(SIGTERM, just_die);
child_main((void *)slot);
*ppthread_globals = parent_globals;
}
ap_update_child_status(slot, SERVER_STARTING, (request_rec *) NULL);
if ((tid = _beginthread(child_main, NULL, 65536, (void *)slot)) == -1) {
ap_log_error(APLOG_MARK, APLOG_ERR, s, "_beginthread: Unable to create new thread");
/* _beginthread didn't succeed. Fix the scoreboard or else
* it will say SERVER_STARTING forever and ever
*/
(void) ap_update_child_status(slot, SERVER_DEAD, (request_rec *) NULL);
/* In case system resources are maxxed out, we don't want
Apache running away with the CPU trying to _beginthread over and
over and over again. */
sleep(10);
return -1;
}
ap_scoreboard_image->parent[slot].tid = tid;
return 0;
}
/* start up a bunch of children */
static void startup_children(int number_to_start)
{
int i;
time_t now = time(0);
for (i = 0; number_to_start && i < ap_daemons_limit; ++i) {
if (ap_scoreboard_image->servers[i].status != SERVER_DEAD) {
continue;
}
if (make_child(server_conf, i, now) < 0) {
break;
}
--number_to_start;
}
}
/*
* idle_spawn_rate is the number of children that will be spawned on the
* next maintenance cycle if there aren't enough idle servers. It is
* doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
* without the need to spawn.
*/
static int idle_spawn_rate = 1;
#ifndef MAX_SPAWN_RATE
#define MAX_SPAWN_RATE (32)
#endif
static int hold_off_on_exponential_spawning;
static void perform_idle_server_maintenance(void)
{
int i;
int to_kill;
int idle_count;
short_score *ss;
time_t now = time(0);
int free_length;
int free_slots[MAX_SPAWN_RATE];
int last_non_dead;
int total_non_dead;
/* initialize the free_list */
free_length = 0;
to_kill = -1;
idle_count = 0;
last_non_dead = -1;
total_non_dead = 0;
for (i = 0; i < ap_daemons_limit; ++i) {
int status;
if (i >= max_daemons_limit && free_length == idle_spawn_rate)
break;
ss = &ap_scoreboard_image->servers[i];
status = ss->status;
if (status == SERVER_DEAD) {
/* try to keep children numbers as low as possible */
if (free_length < idle_spawn_rate) {
free_slots[free_length] = i;
++free_length;
}
}
else {
/* We consider a starting server as idle because we started it
* at least a cycle ago, and if it still hasn't finished starting
* then we're just going to swamp things worse by forking more.
* So we hopefully won't need to fork more if we count it.
* This depends on the ordering of SERVER_READY and SERVER_STARTING.
*/
if (status <= SERVER_READY) {
++ idle_count;
/* always kill the highest numbered child if we have to...
* no really well thought out reason ... other than observing
* the server behaviour under linux where lower numbered children
* tend to service more hits (and hence are more likely to have
* their data in cpu caches).
*/
to_kill = i;
}
++total_non_dead;
last_non_dead = i;
}
}
max_daemons_limit = last_non_dead + 1;
if (idle_count > ap_daemons_max_free) {
/* kill off one child... we use SIGUSR1 because that'll cause it to
* shut down gracefully, in case it happened to pick up a request
* while we were counting
*/
ap_scoreboard_image->parent[to_kill].deferred_die = 1;
idle_spawn_rate = 1;
}
else if (idle_count < ap_daemons_min_free) {
/* terminate the free list */
if (free_length == 0) {
/* only report this condition once */
static int reported = 0;
if (!reported) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
"server reached MaxClients setting, consider"
" raising the MaxClients setting");
reported = 1;
}
idle_spawn_rate = 1;
}
else {
if (idle_spawn_rate >= 8) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
"server seems busy, (you may need "
"to increase StartServers, or Min/MaxSpareServers), "
"spawning %d children, there are %d idle, and "
"%d total children", idle_spawn_rate,
idle_count, total_non_dead);
}
for (i = 0; i < free_length; ++i) {
make_child(server_conf, free_slots[i], now);
}
/* the next time around we want to spawn twice as many if this
* wasn't good enough, but not if we've just done a graceful
*/
if (hold_off_on_exponential_spawning) {
--hold_off_on_exponential_spawning;
}
else if (idle_spawn_rate < MAX_SPAWN_RATE) {
idle_spawn_rate *= 2;
}
}
}
else {
idle_spawn_rate = 1;
}
}
static void process_child_status(int tid, ap_wait_t status)
{
/* Child died... if it died due to a fatal error,
* we should simply bail out.
*/
if ((WIFEXITED(status)) &&
WEXITSTATUS(status) == APEXIT_CHILDFATAL) {
ap_log_error(APLOG_MARK, APLOG_ALERT|APLOG_NOERRNO, server_conf,
"Child %d returned a Fatal error... \n"
"Apache is exiting!",
tid);
exit(APEXIT_CHILDFATAL);
}
if (WIFSIGNALED(status)) {
switch (WTERMSIG(status)) {
case SIGTERM:
case SIGHUP:
case SIGUSR1:
case SIGKILL:
break;
default:
#ifdef SYS_SIGLIST
#ifdef WCOREDUMP
if (WCOREDUMP(status)) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE,
server_conf,
"child tid %d exit signal %s (%d), "
"possible coredump in %s",
tid, (WTERMSIG(status) >= NumSIG) ? "" :
SYS_SIGLIST[WTERMSIG(status)], WTERMSIG(status),
ap_coredump_dir);
}
else {
#endif
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE,
server_conf,
"child tid %d exit signal %s (%d)", tid,
SYS_SIGLIST[WTERMSIG(status)], WTERMSIG(status));
#ifdef WCOREDUMP
}
#endif
#else
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE,
server_conf,
"child tid %d exit signal %d",
tid, WTERMSIG(status));
#endif
}
}
}
static int setup_listeners(pool *pconf, server_rec *s)
{
ap_listen_rec *lr;
if (ap_listen_open(pconf, s->port)) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ALERT, s,
"no listening sockets available, shutting down");
return -1;
}
listenmaxfd = -1;
FD_ZERO(&listenfds);
for (lr = ap_listeners; lr; lr = lr->next) {
FD_SET(lr->fd, &listenfds);
if (lr->fd > listenmaxfd) {
listenmaxfd = lr->fd;
}
}
return 0;
}
/*****************************************************************
* Executive routines.
*/
int ap_mpm_run(pool *_pconf, pool *plog, server_rec *s)
{
int remaining_children_to_start;
int i;
pconf = _pconf;
server_conf = s;
ap_log_pid(pconf, ap_pid_fname);
if (setup_listeners(pconf, s)) {
/* XXX: hey, what's the right way for the mpm to indicate a fatal error? */
return 1;
}
SAFE_ACCEPT(accept_mutex_init(pconf));
if (!is_graceful) {
reinit_scoreboard(pconf);
}
set_signals();
if (ppthread_globals == NULL) {
if (DosAllocThreadLocalMemory(1, (PULONG *)&ppthread_globals)) {
ap_log_error(APLOG_MARK, APLOG_ALERT|APLOG_NOERRNO, server_conf,
"Error allocating thread local storage"
"Apache is exiting!");
} else {
*ppthread_globals = (struct thread_globals *)ap_palloc(pconf, sizeof(struct thread_globals));
}
}
if (ap_daemons_max_free < ap_daemons_min_free + 1) /* Don't thrash... */
ap_daemons_max_free = ap_daemons_min_free + 1;
/* If we're doing a graceful_restart then we're going to see a lot
* of children exiting immediately when we get into the main loop
* below (because we just sent them SIGUSR1). This happens pretty
* rapidly... and for each one that exits we'll start a new one until
* we reach at least daemons_min_free. But we may be permitted to
* start more than that, so we'll just keep track of how many we're
* supposed to start up without the 1 second penalty between each fork.
*/
remaining_children_to_start = ap_daemons_to_start;
if (remaining_children_to_start > ap_daemons_limit) {
remaining_children_to_start = ap_daemons_limit;
}
if (!is_graceful) {
startup_children(remaining_children_to_start);
remaining_children_to_start = 0;
}
else {
/* give the system some time to recover before kicking into
* exponential mode */
hold_off_on_exponential_spawning = 10;
}
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"%s configured -- resuming normal operations",
ap_get_server_version());
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
"Server built: %s", ap_get_server_built());
restart_pending = shutdown_pending = 0;
while (!restart_pending && !shutdown_pending) {
int child_slot;
ap_wait_t status;
int tid = wait_or_timeout(&status);
/* XXX: if it takes longer than 1 second for all our children
* to start up and get into IDLE state then we may spawn an
* extra child
*/
if (tid >= 0) {
process_child_status(tid, status);
/* non-fatal death... note that it's gone in the scoreboard. */
child_slot = find_child_by_tid(tid);
if (child_slot >= 0) {
(void) ap_update_child_status(child_slot, SERVER_DEAD,
(request_rec *) NULL);
if (remaining_children_to_start
&& child_slot < ap_daemons_limit) {
/* we're still doing a 1-for-1 replacement of dead
* children with new children
*/
make_child(server_conf, child_slot, time(0));
--remaining_children_to_start;
}
#ifdef HAS_OTHER_CHILD
/* TODO: this won't work, we waited on a thread not a process
}
else if (reap_other_child(pid, status) == 0) {
*/
#endif
}
else if (is_graceful) {
/* Great, we've probably just lost a slot in the
* scoreboard. Somehow we don't know about this
* child.
*/
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, server_conf,
"long lost child came home! (tid %d)", tid);
}
/* Don't perform idle maintenance when a child dies,
* only do it when there's a timeout. Remember only a
* finite number of children can die, and it's pretty
* pathological for a lot to die suddenly.
*/
continue;
}
else if (remaining_children_to_start) {
/* we hit a 1 second timeout in which none of the previous
* generation of children needed to be reaped... so assume
* they're all done, and pick up the slack if any is left.
*/
startup_children(remaining_children_to_start);
remaining_children_to_start = 0;
/* In any event we really shouldn't do the code below because
* few of the servers we just started are in the IDLE state
* yet, so we'd mistakenly create an extra server.
*/
continue;
}
perform_idle_server_maintenance();
}
if (shutdown_pending) {
/* Time to gracefully shut down:
* Don't worry about killing child threads for now, the all die when the parent exits
*/
/* cleanup pid file on normal shutdown */
{
const char *pidfile = NULL;
pidfile = ap_server_root_relative (pconf, ap_pid_fname);
if ( pidfile != NULL && unlink(pidfile) == 0)
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO,
server_conf,
"removed PID file %s (pid=%ld)",
pidfile, (long)getpid());
}
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"caught SIGTERM, shutting down");
return 1;
}
/* we've been told to restart */
signal(SIGHUP, SIG_IGN);
signal(SIGUSR1, SIG_IGN);
if (one_process) {
/* not worth thinking about */
return 1;
}
/* advance to the next generation */
/* XXX: we really need to make sure this new generation number isn't in
* use by any of the children.
*/
++ap_scoreboard_image->global.running_generation;
if (is_graceful) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"SIGUSR1 received. Doing graceful restart");
/* kill off the idle ones */
for (i = 0; i < ap_daemons_limit; ++i) {
ap_scoreboard_image->parent[i].deferred_die = 1;
}
/* This is mostly for debugging... so that we know what is still
* gracefully dealing with existing request. But we can't really
* do it if we're in a SCOREBOARD_FILE because it'll cause
* corruption too easily.
*/
for (i = 0; i < ap_daemons_limit; ++i) {
if (ap_scoreboard_image->servers[i].status != SERVER_DEAD) {
ap_scoreboard_image->servers[i].status = SERVER_GRACEFUL;
}
}
}
else {
/* Kill 'em off */
for (i = 0; i < ap_daemons_limit; ++i) {
DosKillThread(ap_scoreboard_image->parent[i].tid);
}
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"SIGHUP received. Attempting to restart");
}
if (!is_graceful) {
ap_restart_time = time(NULL);
}
return 0;
}
static void spmt_os2_pre_config(pool *pconf, pool *plog, pool *ptemp)
{
one_process = !!getenv("ONE_PROCESS");
is_graceful = 0;
ap_listen_pre_config();
ap_daemons_to_start = DEFAULT_START_DAEMON;
ap_daemons_min_free = DEFAULT_MIN_FREE_DAEMON;
ap_daemons_max_free = DEFAULT_MAX_FREE_DAEMON;
ap_daemons_limit = HARD_SERVER_LIMIT;
ap_pid_fname = DEFAULT_PIDLOG;
ap_max_requests_per_child = DEFAULT_MAX_REQUESTS_PER_CHILD;
ap_extended_status = 0;
ap_cpystrn(ap_coredump_dir, ap_server_root, sizeof(ap_coredump_dir));
}
static void spmt_os2_hooks(void)
{
ap_hook_pre_config(spmt_os2_pre_config,NULL,NULL,HOOK_MIDDLE);
INIT_SIGLIST();
/* TODO: set one_process properly */ one_process = 0;
}
static const char *set_pidfile(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
if (cmd->server->is_virtual) {
return "PidFile directive not allowed in <VirtualHost>";
}
ap_pid_fname = arg;
return NULL;
}
static const char *set_daemons_to_start(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_to_start = atoi(arg);
return NULL;
}
static const char *set_min_free_servers(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_min_free = atoi(arg);
if (ap_daemons_min_free <= 0) {
fprintf(stderr, "WARNING: detected MinSpareServers set to non-positive.\n");
fprintf(stderr, "Resetting to 1 to avoid almost certain Apache failure.\n");
fprintf(stderr, "Please read the documentation.\n");
ap_daemons_min_free = 1;
}
return NULL;
}
static const char *set_max_free_servers(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_max_free = atoi(arg);
return NULL;
}
static const char *set_server_limit (cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_limit = atoi(arg);
if (ap_daemons_limit > HARD_SERVER_LIMIT) {
fprintf(stderr, "WARNING: MaxClients of %d exceeds compile time limit "
"of %d servers,\n", ap_daemons_limit, HARD_SERVER_LIMIT);
fprintf(stderr, " lowering MaxClients to %d. To increase, please "
"see the\n", HARD_SERVER_LIMIT);
fprintf(stderr, " HARD_SERVER_LIMIT define in src/include/httpd.h.\n");
ap_daemons_limit = HARD_SERVER_LIMIT;
}
else if (ap_daemons_limit < 1) {
fprintf(stderr, "WARNING: Require MaxClients > 0, setting to 1\n");
ap_daemons_limit = 1;
}
return NULL;
}
static const char *set_max_requests(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_max_requests_per_child = atoi(arg);
return NULL;
}
static const char *set_coredumpdir (cmd_parms *cmd, void *dummy, char *arg)
{
struct stat finfo;
const char *fname;
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
fname = ap_server_root_relative(cmd->pool, arg);
/* ZZZ change this to the AP func FileInfo*/
if ((stat(fname, &finfo) == -1) || !S_ISDIR(finfo.st_mode)) {
return ap_pstrcat(cmd->pool, "CoreDumpDirectory ", fname,
" does not exist or is not a directory", NULL);
}
ap_cpystrn(ap_coredump_dir, fname, sizeof(ap_coredump_dir));
return NULL;
}
struct ap_thread_mutex {
HMTX mutex_handle;
};
API_EXPORT(ap_thread_mutex *) ap_thread_mutex_new(void)
{
ULONG rc;
ap_thread_mutex *mutex = malloc(sizeof(ap_thread_mutex));
rc = DosCreateMutexSem(NULL, &mutex->mutex_handle, 0, 0);
ap_assert(rc == 0);
return mutex;
}
API_EXPORT(void) ap_thread_mutex_lock(ap_thread_mutex *mtx)
{
ULONG rc;
rc = DosRequestMutexSem(mtx->mutex_handle, SEM_INDEFINITE_WAIT);
ap_assert(rc == 0);
}
API_EXPORT(void) ap_thread_mutex_unlock(ap_thread_mutex *mtx)
{
ULONG rc;
rc = DosReleaseMutexSem(mtx->mutex_handle);
ap_assert(rc == 0 || rc == ERROR_NOT_OWNER);
}
API_EXPORT(void) ap_thread_mutex_destroy(ap_thread_mutex *mtx)
{
ap_thread_mutex_unlock(mtx);
DosCloseMutexSem(mtx->mutex_handle);
free(mtx);
}
static const command_rec spmt_os2_cmds[] = {
LISTEN_COMMANDS
{ "PidFile", set_pidfile, NULL, RSRC_CONF, TAKE1,
"A file for logging the server process ID"},
{ "StartServers", set_daemons_to_start, NULL, RSRC_CONF, TAKE1,
"Number of child processes launched at server startup" },
{ "MinSpareServers", set_min_free_servers, NULL, RSRC_CONF, TAKE1,
"Minimum number of idle children, to handle request spikes" },
{ "MaxSpareServers", set_max_free_servers, NULL, RSRC_CONF, TAKE1,
"Maximum number of idle children" },
{ "MaxClients", set_server_limit, NULL, RSRC_CONF, TAKE1,
"Maximum number of children alive at the same time" },
{ "MaxRequestsPerChild", set_max_requests, NULL, RSRC_CONF, TAKE1,
"Maximum number of requests a particular child serves before dying." },
{ "CoreDumpDirectory", set_coredumpdir, NULL, RSRC_CONF, TAKE1,
"The location of the directory Apache changes to before dumping core" },
{ NULL }
};
module MODULE_VAR_EXPORT mpm_spmt_os2_module = {
STANDARD20_MODULE_STUFF,
NULL, /* child_init */
NULL, /* create per-directory config structure */
NULL, /* merge per-directory config structures */
NULL, /* create per-server config structure */
NULL, /* merge per-server config structures */
spmt_os2_cmds, /* command table */
NULL, /* handlers */
NULL, /* check auth */
NULL, /* check access */
spmt_os2_hooks, /* register_hooks */
};