blob: b4f3acfb81104a5ffa230e8aaeb5f760a5b9ca5d [file] [log] [blame]
/* ====================================================================
* Copyright (c) 1995-1999 The Apache Group. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the Apache Group
* for use in the Apache HTTP server project (http://www.apache.org/)."
*
* 4. The names "Apache Server" and "Apache Group" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Group.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the Apache Group
* for use in the Apache HTTP server project (http://www.apache.org/)."
*
* THIS SOFTWARE IS PROVIDED BY THE APACHE GROUP ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE GROUP OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Group and was originally based
* on public domain software written at the National Center for
* Supercomputing Applications, University of Illinois, Urbana-Champaign.
* For more information on the Apache Group and the Apache HTTP server
* project, please see <http://www.apache.org/>.
*
*/
#define CORE_PRIVATE
#include "httpd.h"
#include "http_main.h"
#include "http_log.h"
#include "http_config.h" /* for read_config */
#include "http_core.h" /* for get_remote_host */
#include "http_connection.h"
#include "ap_mpm.h"
#include "unixd.h"
#include "iol_socket.h"
#include "ap_listen.h"
#include "scoreboard.h"
#include "acceptlock.h"
#include <poll.h>
#include <netinet/tcp.h>
#include <pthread.h>
/*
* Actual definitions of config globals
*/
int ap_threads_per_child=0; /* Worker threads per child */
int ap_max_requests_per_child=0;
static char *ap_pid_fname=NULL;
static char *ap_scoreboard_fname=NULL;
static int ap_daemons_to_start=0;
static int min_spare_threads=0;
static int max_spare_threads=0;
static int ap_daemons_limit=0;
static time_t ap_restart_time=0;
API_VAR_EXPORT int ap_extended_status = 0;
static int workers_may_exit = 0;
static int requests_this_child;
static int num_listenfds = 0;
static struct pollfd *listenfds;
/* The structure used to pass unique initialization info to each thread */
typedef struct {
int pid;
int tid;
int sd;
pool *tpool; /* "pthread" would be confusing */
} proc_info;
#if 0
#define SAFE_ACCEPT(stmt) do {if (ap_listeners->next != NULL) {stmt;}} while (0)
#else
#define SAFE_ACCEPT(stmt) do {stmt;} while (0)
#endif
/*
* The max child slot ever assigned, preserved across restarts. Necessary
* to deal with MaxClients changes across SIGWINCH restarts. We use this
* value to optimize routines that have to scan the entire scoreboard.
*/
static int max_daemons_limit = -1;
static char ap_coredump_dir[MAX_STRING_LEN];
static int pipe_of_death[2];
static pthread_mutex_t pipe_of_death_mutex;
/* *Non*-shared http_main globals... */
static server_rec *server_conf;
/* one_process --- debugging mode variable; can be set from the command line
* with the -X flag. If set, this gets you the child_main loop running
* in the process which originally started up (no detach, no make_child),
* which is a pretty nice debugging environment. (You'll get a SIGHUP
* early in standalone_main; just continue through. This is the server
* trying to kill off any child processes which it might have lying
* around --- Apache doesn't keep track of their pids, it just sends
* SIGHUP to the process group, ignoring it in the root process.
* Continue through and you'll be fine.).
*/
static int one_process = 0;
#ifdef DEBUG_SIGSTOP
int raise_sigstop_flags;
#endif
#ifdef HAS_OTHER_CHILD
/* used to maintain list of children which aren't part of the scoreboard */
typedef struct other_child_rec other_child_rec;
struct other_child_rec {
other_child_rec *next;
int pid;
void (*maintenance) (int, void *, ap_wait_t);
void *data;
int write_fd;
};
static other_child_rec *other_children;
#endif
static pool *pconf; /* Pool for config stuff */
static pool *pchild; /* Pool for httpd child stuff */
static int my_pid; /* Linux getpid() doesn't work except in main thread. Use
this instead */
/* Keep track of the number of worker threads currently active */
static int worker_thread_count;
static pthread_mutex_t worker_thread_count_mutex;
/* Global, alas, so http_core can talk to us */
enum server_token_type ap_server_tokens = SrvTk_FULL;
API_EXPORT(const server_rec *) ap_get_server_conf(void)
{
return (server_conf);
}
API_EXPORT(int) ap_get_max_daemons(void)
{
return max_daemons_limit;
}
/* a clean exit from a child with proper cleanup
static void clean_child_exit(int code) __attribute__ ((noreturn)); */
void clean_child_exit(int code)
{
if (pchild) {
ap_destroy_pool(pchild);
}
exit(code);
}
/*****************************************************************
* dealing with other children
*/
#ifdef HAS_OTHER_CHILD
API_EXPORT(void) ap_register_other_child(int pid,
void (*maintenance) (int reason, void *, ap_wait_t status),
void *data, int write_fd)
{
other_child_rec *ocr;
ocr = ap_palloc(pconf, sizeof(*ocr));
ocr->pid = pid;
ocr->maintenance = maintenance;
ocr->data = data;
ocr->write_fd = write_fd;
ocr->next = other_children;
other_children = ocr;
}
/* note that since this can be called by a maintenance function while we're
* scanning the other_children list, all scanners should protect themself
* by loading ocr->next before calling any maintenance function.
*/
API_EXPORT(void) ap_unregister_other_child(void *data)
{
other_child_rec **pocr, *nocr;
for (pocr = &other_children; *pocr; pocr = &(*pocr)->next) {
if ((*pocr)->data == data) {
nocr = (*pocr)->next;
(*(*pocr)->maintenance) (OC_REASON_UNREGISTER, (*pocr)->data, -1);
*pocr = nocr;
/* XXX: um, well we've just wasted some space in pconf ? */
return;
}
}
}
/* test to ensure that the write_fds are all still writable, otherwise
* invoke the maintenance functions as appropriate */
static void probe_writable_fds(void)
{
return;
#if 0
fd_set writable_fds;
int fd_max;
other_child_rec *ocr, *nocr;
struct timeval tv;
int rc;
if (other_children == NULL)
return;
fd_max = 0;
FD_ZERO(&writable_fds);
do {
for (ocr = other_children; ocr; ocr = ocr->next) {
if (ocr->write_fd == -1)
continue;
FD_SET(ocr->write_fd, &writable_fds);
if (ocr->write_fd > fd_max) {
fd_max = ocr->write_fd;
}
}
if (fd_max == 0)
return;
tv.tv_sec = 0;
tv.tv_usec = 0;
rc = ap_select(fd_max + 1, NULL, &writable_fds, NULL, &tv);
} while (rc == -1 && errno == EINTR);
if (rc == -1) {
/* XXX: uhh this could be really bad, we could have a bad file
* descriptor due to a bug in one of the maintenance routines */
ap_log_unixerr("probe_writable_fds", "select",
"could not probe writable fds", server_conf);
return;
}
if (rc == 0)
return;
for (ocr = other_children; ocr; ocr = nocr) {
nocr = ocr->next;
if (ocr->write_fd == -1)
continue;
if (FD_ISSET(ocr->write_fd, &writable_fds))
continue;
(*ocr->maintenance) (OC_REASON_UNWRITABLE, ocr->data, -1);
}
#endif
}
/* possibly reap an other_child, return 0 if yes, -1 if not */
static int reap_other_child(int pid, ap_wait_t status)
{
other_child_rec *ocr, *nocr;
for (ocr = other_children; ocr; ocr = nocr) {
nocr = ocr->next;
if (ocr->pid != pid)
continue;
ocr->pid = -1;
(*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
return 0;
}
return -1;
}
#endif
static void reclaim_child_processes(int terminate)
{
int i, status;
long int waittime = 1024 * 16; /* in usecs */
struct timeval tv;
int waitret, tries;
int not_dead_yet;
#ifdef HAS_OTHER_CHILD
other_child_rec *ocr, *nocr;
#endif
ap_sync_scoreboard_image();
for (tries = terminate ? 4 : 1; tries <= 9; ++tries) {
/* don't want to hold up progress any more than
* necessary, but we need to allow children a few moments to exit.
* Set delay with an exponential backoff.
*/
tv.tv_sec = waittime / 1000000;
tv.tv_usec = waittime % 1000000;
waittime = waittime * 4;
ap_select(0, NULL, NULL, NULL, &tv);
/* now see who is done */
not_dead_yet = 0;
for (i = 0; i < max_daemons_limit; ++i) {
int pid = ap_scoreboard_image->parent[i].pid;
if (pid == my_pid || pid == 0)
continue;
waitret = waitpid(pid, &status, WNOHANG);
if (waitret == pid || waitret == -1) {
ap_scoreboard_image->parent[i].pid = 0;
continue;
}
++not_dead_yet;
switch (tries) {
case 1: /* 16ms */
case 2: /* 82ms */
break;
case 3: /* 344ms */
case 4: /* 16ms */
case 5: /* 82ms */
case 6: /* 344ms */
case 7: /* 1.4sec */
/* ok, now it's being annoying */
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING,
server_conf,
"child process %d still did not exit, sending a SIGTERM",
pid);
kill(pid, SIGTERM);
break;
case 8: /* 6 sec */
/* die child scum */
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
"child process %d still did not exit, sending a SIGKILL",
pid);
kill(pid, SIGKILL);
break;
case 9: /* 14 sec */
/* gave it our best shot, but alas... If this really
* is a child we are trying to kill and it really hasn't
* exited, we will likely fail to bind to the port
* after the restart.
*/
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
"could not make child process %d exit, "
"attempting to continue anyway", pid);
break;
}
}
#ifdef HAS_OTHER_CHILD
for (ocr = other_children; ocr; ocr = nocr) {
nocr = ocr->next;
if (ocr->pid == -1)
continue;
waitret = waitpid(ocr->pid, &status, WNOHANG);
if (waitret == ocr->pid) {
ocr->pid = -1;
(*ocr->maintenance) (OC_REASON_DEATH, ocr->data, status);
}
else if (waitret == 0) {
(*ocr->maintenance) (OC_REASON_RESTART, ocr->data, -1);
++not_dead_yet;
}
else if (waitret == -1) {
/* uh what the heck? they didn't call unregister? */
ocr->pid = -1;
(*ocr->maintenance) (OC_REASON_LOST, ocr->data, -1);
}
}
#endif
if (!not_dead_yet) {
/* nothing left to wait for */
break;
}
}
}
/* Finally, this routine is used by the caretaker process to wait for
* a while...
*/
/* number of calls to wait_or_timeout between writable probes */
#ifndef INTERVAL_OF_WRITABLE_PROBES
#define INTERVAL_OF_WRITABLE_PROBES 10
#endif
static int wait_or_timeout_counter;
static int wait_or_timeout(ap_wait_t *status)
{
struct timeval tv;
int ret;
++wait_or_timeout_counter;
if (wait_or_timeout_counter == INTERVAL_OF_WRITABLE_PROBES) {
wait_or_timeout_counter = 0;
#ifdef HAS_OTHER_CHILD
probe_writable_fds();
#endif
}
ret = waitpid(-1, status, WNOHANG);
if (ret == -1 && errno == EINTR) {
return -1;
}
if (ret > 0) {
return ret;
}
tv.tv_sec = SCOREBOARD_MAINTENANCE_INTERVAL / 1000000;
tv.tv_usec = SCOREBOARD_MAINTENANCE_INTERVAL % 1000000;
ap_select(0, NULL, NULL, NULL, &tv);
return -1;
}
#if defined(NSIG)
#define NumSIG NSIG
#elif defined(_NSIG)
#define NumSIG _NSIG
#elif defined(__NSIG)
#define NumSIG __NSIG
#else
#define NumSIG 32 /* for 1998's unixes, this is still a good assumption */
#endif
#ifdef SYS_SIGLIST /* platform has sys_siglist[] */
#define INIT_SIGLIST() /*nothing*/
#else /* platform has no sys_siglist[], define our own */
#define SYS_SIGLIST ap_sys_siglist
#define INIT_SIGLIST() siglist_init();
const char *ap_sys_siglist[NumSIG];
static void siglist_init(void)
{
int sig;
ap_sys_siglist[0] = "Signal 0";
#ifdef SIGHUP
ap_sys_siglist[SIGHUP] = "Hangup";
#endif
#ifdef SIGINT
ap_sys_siglist[SIGINT] = "Interrupt";
#endif
#ifdef SIGQUIT
ap_sys_siglist[SIGQUIT] = "Quit";
#endif
#ifdef SIGILL
ap_sys_siglist[SIGILL] = "Illegal instruction";
#endif
#ifdef SIGTRAP
ap_sys_siglist[SIGTRAP] = "Trace/BPT trap";
#endif
#ifdef SIGIOT
ap_sys_siglist[SIGIOT] = "IOT instruction";
#endif
#ifdef SIGABRT
ap_sys_siglist[SIGABRT] = "Abort";
#endif
#ifdef SIGEMT
ap_sys_siglist[SIGEMT] = "Emulator trap";
#endif
#ifdef SIGFPE
ap_sys_siglist[SIGFPE] = "Arithmetic exception";
#endif
#ifdef SIGKILL
ap_sys_siglist[SIGKILL] = "Killed";
#endif
#ifdef SIGBUS
ap_sys_siglist[SIGBUS] = "Bus error";
#endif
#ifdef SIGSEGV
ap_sys_siglist[SIGSEGV] = "Segmentation fault";
#endif
#ifdef SIGSYS
ap_sys_siglist[SIGSYS] = "Bad system call";
#endif
#ifdef SIGPIPE
ap_sys_siglist[SIGPIPE] = "Broken pipe";
#endif
#ifdef SIGALRM
ap_sys_siglist[SIGALRM] = "Alarm clock";
#endif
#ifdef SIGTERM
ap_sys_siglist[SIGTERM] = "Terminated";
#endif
#ifdef SIGUSR1
ap_sys_siglist[SIGUSR1] = "User defined signal 1";
#endif
#ifdef SIGUSR2
ap_sys_siglist[SIGUSR2] = "User defined signal 2";
#endif
#ifdef SIGCLD
ap_sys_siglist[SIGCLD] = "Child status change";
#endif
#ifdef SIGCHLD
ap_sys_siglist[SIGCHLD] = "Child status change";
#endif
#ifdef SIGPWR
ap_sys_siglist[SIGPWR] = "Power-fail restart";
#endif
#ifdef SIGWINCH
ap_sys_siglist[SIGWINCH] = "Window changed";
#endif
#ifdef SIGURG
ap_sys_siglist[SIGURG] = "urgent socket condition";
#endif
#ifdef SIGPOLL
ap_sys_siglist[SIGPOLL] = "Pollable event occurred";
#endif
#ifdef SIGIO
ap_sys_siglist[SIGIO] = "socket I/O possible";
#endif
#ifdef SIGSTOP
ap_sys_siglist[SIGSTOP] = "Stopped (signal)";
#endif
#ifdef SIGTSTP
ap_sys_siglist[SIGTSTP] = "Stopped";
#endif
#ifdef SIGCONT
ap_sys_siglist[SIGCONT] = "Continued";
#endif
#ifdef SIGTTIN
ap_sys_siglist[SIGTTIN] = "Stopped (tty input)";
#endif
#ifdef SIGTTOU
ap_sys_siglist[SIGTTOU] = "Stopped (tty output)";
#endif
#ifdef SIGVTALRM
ap_sys_siglist[SIGVTALRM] = "virtual timer expired";
#endif
#ifdef SIGPROF
ap_sys_siglist[SIGPROF] = "profiling timer expired";
#endif
#ifdef SIGXCPU
ap_sys_siglist[SIGXCPU] = "exceeded cpu limit";
#endif
#ifdef SIGXFSZ
ap_sys_siglist[SIGXFSZ] = "exceeded file size limit";
#endif
for (sig=0; sig < sizeof(ap_sys_siglist)/sizeof(ap_sys_siglist[0]); ++sig)
if (ap_sys_siglist[sig] == NULL)
ap_sys_siglist[sig] = "";
}
#endif /* platform has sys_siglist[] */
/* handle all varieties of core dumping signals */
static void sig_coredump(int sig)
{
chdir(ap_coredump_dir);
signal(sig, SIG_DFL);
kill(getpid(), sig);
/* At this point we've got sig blocked, because we're still inside
* the signal handler. When we leave the signal handler it will
* be unblocked, and we'll take the signal... and coredump or whatever
* is appropriate for this particular Unix. In addition the parent
* will see the real signal we received -- whereas if we called
* abort() here, the parent would only see SIGABRT.
*/
}
static void just_die(int sig)
{
clean_child_exit(0);
}
/*****************************************************************
* Connection structures and accounting...
*/
/* volatile just in case */
static int volatile shutdown_pending;
static int volatile restart_pending;
static int volatile is_graceful;
ap_generation_t volatile ap_my_generation;
/*
* ap_start_shutdown() and ap_start_restart(), below, are a first stab at
* functions to initiate shutdown or restart without relying on signals.
* Previously this was initiated in sig_term() and restart() signal handlers,
* but we want to be able to start a shutdown/restart from other sources --
* e.g. on Win32, from the service manager. Now the service manager can
* call ap_start_shutdown() or ap_start_restart() as appropiate. Note that
* these functions can also be called by the child processes, since global
* variables are no longer used to pass on the required action to the parent.
*
* These should only be called from the parent process itself, since the
* parent process will use the shutdown_pending and restart_pending variables
* to determine whether to shutdown or restart. The child process should
* call signal_parent() directly to tell the parent to die -- this will
* cause neither of those variable to be set, which the parent will
* assume means something serious is wrong (which it will be, for the
* child to force an exit) and so do an exit anyway.
*/
void ap_start_shutdown(void)
{
if (shutdown_pending == 1) {
/* Um, is this _probably_ not an error, if the user has
* tried to do a shutdown twice quickly, so we won't
* worry about reporting it.
*/
return;
}
shutdown_pending = 1;
}
/* do a graceful restart if graceful == 1 */
void ap_start_restart(int graceful)
{
if (restart_pending == 1) {
/* Probably not an error - don't bother reporting it */
return;
}
restart_pending = 1;
is_graceful = graceful;
}
static void sig_term(int sig)
{
ap_start_shutdown();
}
static void restart(int sig)
{
#ifndef WIN32
ap_start_restart(sig == SIGWINCH);
#else
ap_start_restart(1);
#endif
}
static void set_signals(void)
{
#ifndef NO_USE_SIGACTION
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (!one_process) {
sa.sa_handler = sig_coredump;
#if defined(SA_ONESHOT)
sa.sa_flags = SA_ONESHOT;
#elif defined(SA_RESETHAND)
sa.sa_flags = SA_RESETHAND;
#endif
if (sigaction(SIGSEGV, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGSEGV)");
#ifdef SIGBUS
if (sigaction(SIGBUS, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGBUS)");
#endif
#ifdef SIGABORT
if (sigaction(SIGABORT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGABORT)");
#endif
#ifdef SIGABRT
if (sigaction(SIGABRT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGABRT)");
#endif
#ifdef SIGILL
if (sigaction(SIGILL, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGILL)");
#endif
sa.sa_flags = 0;
}
sa.sa_handler = sig_term;
if (sigaction(SIGTERM, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGTERM)");
#ifdef SIGINT
if (sigaction(SIGINT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGINT)");
#endif
#ifdef SIGXCPU
sa.sa_handler = SIG_DFL;
if (sigaction(SIGXCPU, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGXCPU)");
#endif
#ifdef SIGXFSZ
sa.sa_handler = SIG_DFL;
if (sigaction(SIGXFSZ, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGXFSZ)");
#endif
#ifdef SIGPIPE
sa.sa_handler = SIG_IGN;
if (sigaction(SIGPIPE, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGPIPE)");
#endif
/* we want to ignore HUPs and WINCH while we're busy processing one */
sigaddset(&sa.sa_mask, SIGHUP);
sigaddset(&sa.sa_mask, SIGWINCH);
sa.sa_handler = restart;
if (sigaction(SIGHUP, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGHUP)");
if (sigaction(SIGWINCH, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "sigaction(SIGWINCH)");
#else
if (!one_process) {
signal(SIGSEGV, sig_coredump);
#ifdef SIGBUS
signal(SIGBUS, sig_coredump);
#endif /* SIGBUS */
#ifdef SIGABORT
signal(SIGABORT, sig_coredump);
#endif /* SIGABORT */
#ifdef SIGABRT
signal(SIGABRT, sig_coredump);
#endif /* SIGABRT */
#ifdef SIGILL
signal(SIGILL, sig_coredump);
#endif /* SIGILL */
#ifdef SIGXCPU
signal(SIGXCPU, SIG_DFL);
#endif /* SIGXCPU */
#ifdef SIGXFSZ
signal(SIGXFSZ, SIG_DFL);
#endif /* SIGXFSZ */
}
signal(SIGTERM, sig_term);
#ifdef SIGHUP
signal(SIGHUP, restart);
#endif /* SIGHUP */
#ifdef SIGWINCH
signal(SIGWINCH, restart);
#endif /* SIGWINCH */
#ifdef SIGPIPE
signal(SIGPIPE, SIG_IGN);
#endif /* SIGPIPE */
#endif
}
static int setup_listeners(pool *pconf, server_rec *s)
{
ap_listen_rec *lr;
int num_listeners = 0;
if (ap_listen_open(pconf, s->port)) {
return 0;
}
for (lr = ap_listeners; lr; lr = lr->next) {
num_listeners++;
}
return num_listeners;
}
/*****************************************************************
* Here follows a long bunch of generic server bookkeeping stuff...
*/
#if defined(TCP_NODELAY) && !defined(MPE) && !defined(TPF)
static void sock_disable_nagle(int s) /* ZZZ abstract */
{
/* The Nagle algorithm says that we should delay sending partial
* packets in hopes of getting more data. We don't want to do
* this; we are not telnet. There are bad interactions between
* persistent connections and Nagle's algorithm that have very severe
* performance penalties. (Failing to disable Nagle is not much of a
* problem with simple HTTP.)
*
* In spite of these problems, failure here is not a shooting offense.
*/
int just_say_no = 1;
if (setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (char *) &just_say_no,
sizeof(int)) < 0) {
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf,
"setsockopt: (TCP_NODELAY)");
}
}
#else
#define sock_disable_nagle(s) /* NOOP */
#endif
int ap_graceful_stop_signalled(void)
{
/* XXX - Does this really work? - Manoj */
return is_graceful;
}
/*****************************************************************
* Child process main loop.
*/
static void process_socket(pool *p, struct sockaddr *sa_client, int csd, int my_child_num, int my_thread_num)
{
struct sockaddr sa_server; /* ZZZZ */
size_t len = sizeof(struct sockaddr);
BUFF *conn_io;
conn_rec *current_conn;
ap_iol *iol;
if (getsockname(csd, &sa_server, &len) < 0) {
ap_log_error(APLOG_MARK, APLOG_ERR, server_conf, "getsockname");
close(csd);
return;
}
sock_disable_nagle(csd);
iol = unix_attach_socket(csd);
if (iol == NULL) {
if (errno == EBADF) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, NULL,
"filedescriptor (%u) larger than FD_SETSIZE (%u) "
"found, you probably need to rebuild Apache with a "
"larger FD_SETSIZE", csd, FD_SETSIZE);
}
else {
ap_log_error(APLOG_MARK, APLOG_WARNING, NULL,
"error attaching to socket");
}
close(csd);
return;
}
(void) ap_update_child_status(my_child_num, my_thread_num,
SERVER_BUSY_READ, (request_rec *) NULL);
conn_io = ap_bcreate(p, B_RDWR);
ap_bpush_iol(conn_io, iol);
current_conn = ap_new_connection(p, server_conf, conn_io,
(const struct sockaddr_in *) sa_client,
(const struct sockaddr_in *) &sa_server,
my_child_num, my_thread_num);
ap_process_connection(current_conn);
}
static void * worker_thread(void * dummy)
{
proc_info * ti = dummy;
int process_slot = ti->pid;
int thread_slot = ti->tid;
pool *tpool = ti->tpool;
struct sockaddr sa_client;
int csd = -1;
pool *ptrans; /* Pool for per-transaction stuff */
int sd = -1;
int srv;
int ret;
char pipe_read_char;
int curr_pollfd, last_pollfd = 0;
size_t len = sizeof(struct sockaddr);
free(ti);
ptrans = ap_make_sub_pool(tpool);
pthread_mutex_lock(&worker_thread_count_mutex);
worker_thread_count++;
pthread_mutex_unlock(&worker_thread_count_mutex);
/* TODO: Switch to a system where threads reuse the results from earlier
poll calls - manoj */
while (!workers_may_exit) {
workers_may_exit |= (ap_max_requests_per_child != 0) && (requests_this_child <= 0);
if (workers_may_exit) break;
(void) ap_update_child_status(process_slot, thread_slot, SERVER_READY,
(request_rec *) NULL);
SAFE_ACCEPT(intra_mutex_on(0));
if (workers_may_exit) {
SAFE_ACCEPT(intra_mutex_off(0));
break;
}
SAFE_ACCEPT(accept_mutex_on(0));
while (!workers_may_exit) {
srv = poll(listenfds, num_listenfds + 1, -1);
if (srv < 0) {
if (errno == EINTR) {
continue;
}
/* poll() will only return errors in catastrophic
* circumstances. Let's try exiting gracefully, for now. */
ap_log_error(APLOG_MARK, APLOG_ERR, (const server_rec *)
ap_get_server_conf(), "poll: (listen)");
workers_may_exit = 1;
}
if (workers_may_exit) break;
if (listenfds[0].revents & POLLIN) {
/* A process got a signal on the shutdown pipe. Check if we're
* the lucky process to die. */
pthread_mutex_lock(&pipe_of_death_mutex);
if (!workers_may_exit) {
ret = read(listenfds[0].fd, &pipe_read_char, 1);
if (ret == -1 && errno == EAGAIN) {
/* It lost the lottery. It must continue to suffer
* through a life of servitude. */
pthread_mutex_unlock(&pipe_of_death_mutex);
continue;
}
else {
/* It won the lottery (or something else is very
* wrong). Embrace death with open arms. */
workers_may_exit = 1;
pthread_mutex_unlock(&pipe_of_death_mutex);
break;
}
}
pthread_mutex_unlock(&pipe_of_death_mutex);
}
if (num_listenfds == 1) {
sd = ap_listeners->fd;
goto got_fd;
}
else {
/* find a listener */
curr_pollfd = last_pollfd;
do {
curr_pollfd++;
if (curr_pollfd > num_listenfds) {
curr_pollfd = 1;
}
/* XXX: Should we check for POLLERR? */
if (listenfds[curr_pollfd].revents & POLLIN) {
last_pollfd = curr_pollfd;
sd = listenfds[curr_pollfd].fd;
goto got_fd;
}
} while (curr_pollfd != last_pollfd);
}
}
got_fd:
if (!workers_may_exit) {
csd = ap_accept(sd, &sa_client, &len);
SAFE_ACCEPT(accept_mutex_off(0));
SAFE_ACCEPT(intra_mutex_off(0));
}
else {
SAFE_ACCEPT(accept_mutex_off(0));
SAFE_ACCEPT(intra_mutex_off(0));
break;
}
process_socket(ptrans, &sa_client, csd, process_slot, thread_slot);
ap_clear_pool(ptrans);
requests_this_child--;
}
ap_destroy_pool(tpool);
ap_update_child_status(process_slot, thread_slot, SERVER_DEAD,
(request_rec *) NULL);
pthread_mutex_lock(&worker_thread_count_mutex);
worker_thread_count--;
if (worker_thread_count == 0) {
/* All the threads have exited, now finish the shutdown process
* by signalling the sigwait thread */
kill(my_pid, SIGTERM);
}
pthread_mutex_unlock(&worker_thread_count_mutex);
return NULL;
}
static void child_main(int child_num_arg)
{
sigset_t sig_mask;
int signal_received;
pthread_t thread;
pthread_attr_t thread_attr;
int i;
int my_child_num = child_num_arg;
proc_info *my_info = NULL;
ap_listen_rec *lr;
my_pid = getpid();
pchild = ap_make_sub_pool(pconf);
/*stuff to do before we switch id's, so we have permissions.*/
reopen_scoreboard(pchild);
SAFE_ACCEPT(intra_mutex_init(pchild, 1));
SAFE_ACCEPT(accept_mutex_child_init(pchild));
if (unixd_setup_child()) {
clean_child_exit(APEXIT_CHILDFATAL);
}
ap_child_init_hook(pchild, server_conf);
/*done with init critical section */
/* All threads should mask signals out, accoring to sigwait(2) man page */
sigemptyset(&sig_mask);
if (pthread_sigmask(SIG_SETMASK, &sig_mask, NULL) != 0) {
ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf, "pthread_sigmask");
}
requests_this_child = ap_max_requests_per_child;
/* Set up the pollfd array */
listenfds = ap_palloc(pchild, sizeof(struct pollfd) * (num_listenfds + 1));
listenfds[0].fd = pipe_of_death[0];
listenfds[0].events = POLLIN;
listenfds[0].revents = 0;
for (lr = ap_listeners, i = 1; i <= num_listenfds; lr = lr->next, ++i) {
listenfds[i].fd = lr->fd;
listenfds[i].events = POLLIN; /* should we add POLLPRI ?*/
listenfds[i].revents = 0;
}
/* Setup worker threads */
worker_thread_count = 0;
pthread_mutex_init(&worker_thread_count_mutex, NULL);
pthread_mutex_init(&pipe_of_death_mutex, NULL);
pthread_attr_init(&thread_attr);
pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
for (i=0; i < ap_threads_per_child; i++) {
my_info = (proc_info *)malloc(sizeof(proc_info));
if (my_info == NULL) {
ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
"malloc: out of memory");
clean_child_exit(APEXIT_CHILDFATAL);
}
my_info->pid = my_child_num;
my_info->tid = i;
my_info->sd = 0;
my_info->tpool = ap_make_sub_pool(pchild);
/* We are creating threads right now */
(void) ap_update_child_status(my_child_num, i, SERVER_STARTING,
(request_rec *) NULL);
if (pthread_create(&thread, &thread_attr, worker_thread, my_info)) {
ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
"pthread_create: unable to create worker thread");
/* In case system resources are maxxed out, we don't want
Apache running away with the CPU trying to fork over and
over and over again if we exit. */
sleep(10);
clean_child_exit(APEXIT_CHILDFATAL);
}
/* We let each thread update it's own scoreboard entry. This is done
* because it let's us deal with tid better.
*/
}
pthread_attr_destroy(&thread_attr);
/* This thread will be the one responsible for handling signals */
sigemptyset(&sig_mask);
sigaddset(&sig_mask, SIGTERM);
sigaddset(&sig_mask, SIGINT);
sigwait(&sig_mask, &signal_received);
switch (signal_received) {
case SIGTERM:
case SIGINT:
just_die(signal_received);
break;
default:
ap_log_error(APLOG_MARK, APLOG_ALERT, server_conf,
"received impossible signal: %d", signal_received);
just_die(SIGTERM);
}
}
static int make_child(server_rec *s, int slot, time_t now) /* ZZZ */
{
int pid;
if (slot + 1 > max_daemons_limit) {
max_daemons_limit = slot + 1;
}
if (one_process) {
set_signals();
ap_scoreboard_image->parent[slot].pid = getpid();
child_main(slot);
}
if ((pid = fork()) == -1) {
ap_log_error(APLOG_MARK, APLOG_ERR, s, "fork: Unable to fork new process");
/* In case system resources are maxxed out, we don't want
Apache running away with the CPU trying to fork over and
over and over again. */
sleep(10);
return -1;
}
if (!pid) {
#ifdef AIX_BIND_PROCESSOR
/* By default, AIX binds to a single processor. This bit unbinds
children which will then bind to another CPU.
*/
#include <sys/processor.h>
int status = bindprocessor(BINDPROCESS, (int)getpid(),
PROCESSOR_CLASS_ANY);
if (status != OK)
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, server_conf,
"processor unbind failed %d", status);
#endif
RAISE_SIGSTOP(MAKE_CHILD);
/* XXX - For an unthreaded server, a signal handler will be necessary
signal(SIGTERM, just_die);
*/
child_main(slot);
return 0;
}
/* else */
ap_scoreboard_image->parent[slot].pid = pid;
return 0;
}
/* start up a bunch of children */
static void startup_children(int number_to_start)
{
int i;
for (i = 0; number_to_start && i < ap_daemons_limit; ++i) {
if (ap_scoreboard_image->parent[i].pid != 0) {
continue;
}
if (make_child(server_conf, i, 0) < 0) {
break;
}
--number_to_start;
}
}
/*
* idle_spawn_rate is the number of children that will be spawned on the
* next maintenance cycle if there aren't enough idle servers. It is
* doubled up to MAX_SPAWN_RATE, and reset only when a cycle goes by
* without the need to spawn.
*/
static int idle_spawn_rate = 1;
#ifndef MAX_SPAWN_RATE
#define MAX_SPAWN_RATE (32)
#endif
static int hold_off_on_exponential_spawning;
static void perform_idle_server_maintenance(void)
{
int i, j;
int idle_thread_count;
thread_score *ss;
time_t now = 0;
int free_length;
int free_slots[MAX_SPAWN_RATE];
int last_non_dead;
int total_non_dead;
/* initialize the free_list */
free_length = 0;
idle_thread_count = 0;
last_non_dead = -1;
total_non_dead = 0;
ap_check_signals();
ap_sync_scoreboard_image();
for (i = 0; i < ap_daemons_limit; ++i) {
/* Initialization to satisfy the compiler. It doesn't know
* that ap_threads_per_child is always > 0 */
int status = SERVER_DEAD;
int any_dying_threads = 0;
int all_dead_threads = 1;
int idle_thread_addition = 0;
if (i >= max_daemons_limit && free_length == idle_spawn_rate)
break;
for (j = 0; j < ap_threads_per_child; j++) {
ss = &ap_scoreboard_image->servers[i][j];
status = ss->status;
any_dying_threads = any_dying_threads || (status == SERVER_DEAD)
|| (status == SERVER_GRACEFUL);
all_dead_threads = all_dead_threads && (status == SERVER_DEAD);
/* We consider a starting server as idle because we started it
* at least a cycle ago, and if it still hasn't finished starting
* then we're just going to swamp things worse by forking more.
* So we hopefully won't need to fork more if we count it.
* This depends on the ordering of SERVER_READY and SERVER_STARTING.
*/
if (status <= SERVER_READY) {
++idle_thread_addition;
}
}
if (all_dead_threads && free_length < idle_spawn_rate) {
free_slots[free_length] = i;
++free_length;
}
if (!all_dead_threads) {
last_non_dead = i;
}
if (!any_dying_threads) {
++total_non_dead;
idle_thread_count += idle_thread_addition;
}
}
max_daemons_limit = last_non_dead + 1;
if (idle_thread_count > max_spare_threads) {
/* Kill off one child */
char char_of_death = '!';
if (write(pipe_of_death[1], &char_of_death, 1) == -1) {
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "write pipe_of_death");
}
idle_spawn_rate = 1;
}
else if (idle_thread_count < min_spare_threads) {
/* terminate the free list */
if (free_length == 0) {
/* only report this condition once */
static int reported = 0;
if (!reported) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ERR, server_conf,
"server reached MaxClients setting, consider"
" raising the MaxClients setting");
reported = 1;
}
idle_spawn_rate = 1;
}
else {
/* ZZZZ */
if (idle_spawn_rate >= 8) {
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
"server seems busy, (you may need "
"to increase StartServers, ThreadsPerChild "
"or Min/MaxSparetThreads), "
"spawning %d children, there are around %d idle "
"threads, and %d total children", idle_spawn_rate,
idle_thread_count, total_non_dead);
}
for (i = 0; i < free_length; ++i) {
make_child(server_conf, free_slots[i], now);
}
/* the next time around we want to spawn twice as many if this
* wasn't good enough, but not if we've just done a graceful
*/
if (hold_off_on_exponential_spawning) {
--hold_off_on_exponential_spawning;
}
else if (idle_spawn_rate < MAX_SPAWN_RATE) {
idle_spawn_rate *= 2;
}
}
}
else {
idle_spawn_rate = 1;
}
}
static void server_main_loop(int remaining_children_to_start)
{
int child_slot;
ap_wait_t status;
int pid;
int i;
while (!restart_pending && !shutdown_pending) {
pid = wait_or_timeout(&status);
if (pid >= 0) {
child_slot = find_child_by_pid(pid);
if (child_slot >= 0) {
for (i = 0; i < ap_threads_per_child; i++)
ap_update_child_status(child_slot, i, SERVER_DEAD, (request_rec *) NULL);
if (remaining_children_to_start
&& child_slot < ap_daemons_limit) {
/* we're still doing a 1-for-1 replacement of dead
* children with new children
*/
/* ZZZ abstract out for AP funcs. */
make_child(server_conf, child_slot, time(NULL));
--remaining_children_to_start;
}
#ifdef HAS_OTHER_CHILD
}
else if (reap_other_child(pid, status) == 0) {
/* handled */
#endif
}
else if (is_graceful) {
/* Great, we've probably just lost a slot in the
* scoreboard. Somehow we don't know about this
* child.
*/
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_WARNING, server_conf,
"long lost child came home! (pid %d)", pid);
}
/* Don't perform idle maintenance when a child dies,
* only do it when there's a timeout. Remember only a
* finite number of children can die, and it's pretty
* pathological for a lot to die suddenly.
*/
continue;
}
else if (remaining_children_to_start) {
/* we hit a 1 second timeout in which none of the previous
* generation of children needed to be reaped... so assume
* they're all done, and pick up the slack if any is left.
*/
startup_children(remaining_children_to_start);
remaining_children_to_start = 0;
/* In any event we really shouldn't do the code below because
* few of the servers we just started are in the IDLE state
* yet, so we'd mistakenly create an extra server.
*/
continue;
}
perform_idle_server_maintenance();
}
}
int ap_mpm_run(pool *_pconf, pool *plog, server_rec *s)
{
int remaining_children_to_start;
pconf = _pconf;
server_conf = s;
if (pipe(pipe_of_death) == -1) {
ap_log_error(APLOG_MARK, APLOG_ERR,
(const server_rec*) server_conf,
"pipe: (pipe_of_death)");
exit(1);
}
ap_note_cleanups_for_fd(pconf, pipe_of_death[0]);
ap_note_cleanups_for_fd(pconf, pipe_of_death[1]);
if (fcntl(pipe_of_death[0], F_SETFD, O_NONBLOCK) == -1) {
ap_log_error(APLOG_MARK, APLOG_ERR,
(const server_rec*) server_conf,
"fcntl: O_NONBLOCKing (pipe_of_death)");
exit(1);
}
server_conf = s;
if ((num_listenfds = setup_listeners(pconf, server_conf)) < 1) {
/* XXX: hey, what's the right way for the mpm to indicate a fatal error? */
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_ALERT, s,
"no listening sockets available, shutting down");
return 1;
}
ap_clear_pool(plog);
ap_open_logs(server_conf, plog);
ap_log_pid(pconf, ap_pid_fname);
SAFE_ACCEPT(accept_mutex_init(pconf, 1));
if (!is_graceful) {
reinit_scoreboard(pconf);
}
set_signals();
/* Don't thrash... */
if (max_spare_threads < min_spare_threads + ap_threads_per_child)
max_spare_threads = min_spare_threads + ap_threads_per_child;
/* If we're doing a graceful_restart then we're going to see a lot
* of children exiting immediately when we get into the main loop
* below (because we just sent them SIGWINCH). This happens pretty
* rapidly... and for each one that exits we'll start a new one until
* we reach at least daemons_min_free. But we may be permitted to
* start more than that, so we'll just keep track of how many we're
* supposed to start up without the 1 second penalty between each fork.
*/
remaining_children_to_start = ap_daemons_to_start;
if (remaining_children_to_start > ap_daemons_limit) {
remaining_children_to_start = ap_daemons_limit;
}
if (!is_graceful) {
startup_children(remaining_children_to_start);
remaining_children_to_start = 0;
}
else {
/* give the system some time to recover before kicking into
* exponential mode */
hold_off_on_exponential_spawning = 10;
}
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"%s configured -- resuming normal operations",
ap_get_server_version());
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO, server_conf,
"Server built: %s", ap_get_server_built());
restart_pending = shutdown_pending = 0;
server_main_loop(remaining_children_to_start);
if (shutdown_pending) {
/* Time to gracefully shut down:
* Kill child processes, tell them to call child_exit, etc...
*/
if (ap_killpg(getpgrp(), SIGTERM) < 0) {
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg SIGTERM");
}
reclaim_child_processes(1); /* Start with SIGTERM */
/* cleanup pid file on normal shutdown */
{
const char *pidfile = NULL;
pidfile = ap_server_root_relative (pconf, ap_pid_fname);
if ( pidfile != NULL && unlink(pidfile) == 0)
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_INFO,
server_conf,
"removed PID file %s (pid=%ld)",
pidfile, (long)getpid());
}
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"caught SIGTERM, shutting down");
return 1;
}
/* we've been told to restart */
signal(SIGHUP, SIG_IGN);
if (one_process) {
/* not worth thinking about */
return 1;
}
/* advance to the next generation */
/* XXX: we really need to make sure this new generation number isn't in
* use by any of the children.
*/
++ap_my_generation;
ap_scoreboard_image->global.running_generation = ap_my_generation;
update_scoreboard_global();
if (is_graceful) {
int i, j;
char char_of_death = '!';
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"SIGWINCH received. Doing graceful restart");
/* kill off the idle ones */
for (i = 0; i < ap_daemons_limit; ++i) {
if (write(pipe_of_death[1], &char_of_death, 1) == -1) {
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "write pipe_of_death");
}
}
/* This is mostly for debugging... so that we know what is still
* gracefully dealing with existing request.
*/
for (i = 0; i < ap_daemons_limit; ++i) {
for (j = 0; j < ap_threads_per_child; j++) {
if (ap_scoreboard_image->servers[i][j].status != SERVER_DEAD) {
ap_scoreboard_image->servers[i][j].status = SERVER_GRACEFUL;
}
}
}
}
else {
/* Kill 'em all. Since the child acts the same on the parents SIGTERM
* and a SIGHUP, we may as well use the same signal, because some user
* pthreads are stealing signals from us left and right.
*/
if (ap_killpg(getpgrp(), SIGTERM) < 0) {
ap_log_error(APLOG_MARK, APLOG_WARNING, server_conf, "killpg SIGTERM");
}
reclaim_child_processes(1); /* Start with SIGTERM */
ap_log_error(APLOG_MARK, APLOG_NOERRNO|APLOG_NOTICE, server_conf,
"SIGHUP received. Attempting to restart");
}
if (!is_graceful) {
ap_restart_time = time(NULL); /* ZZZZZ */
}
return 0;
}
static void mpmt_pthread_pre_config(pool *pconf, pool *plog, pool *ptemp)
{
static int restart_num = 0;
one_process = getenv("ONE_PROCESS");
/* sigh, want this only the second time around */
if (restart_num++ == 1) {
is_graceful = 0;
if (!one_process) {
unixd_detach();
}
my_pid = getpid();
}
unixd_pre_config();
ap_listen_pre_config();
ap_daemons_to_start = DEFAULT_START_DAEMON;
min_spare_threads = DEFAULT_MIN_FREE_DAEMON * DEFAULT_THREADS_PER_CHILD;
max_spare_threads = DEFAULT_MAX_FREE_DAEMON * DEFAULT_THREADS_PER_CHILD;
ap_daemons_limit = HARD_SERVER_LIMIT;
ap_threads_per_child = DEFAULT_THREADS_PER_CHILD;
ap_pid_fname = DEFAULT_PIDLOG;
ap_scoreboard_fname = DEFAULT_SCOREBOARD;
ap_lock_fname = DEFAULT_LOCKFILE;
ap_max_requests_per_child = DEFAULT_MAX_REQUESTS_PER_CHILD;
ap_extended_status = 0;
ap_cpystrn(ap_coredump_dir, ap_server_root, sizeof(ap_coredump_dir));
}
static void mpmt_pthread_hooks(void)
{
ap_hook_pre_config(mpmt_pthread_pre_config,NULL,NULL,HOOK_MIDDLE);
INIT_SIGLIST()
one_process = 0;
}
static const char *set_pidfile(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
if (cmd->server->is_virtual) {
return "PidFile directive not allowed in <VirtualHost>";
}
ap_pid_fname = arg;
return NULL;
}
static const char *set_scoreboard(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_scoreboard_fname = arg;
return NULL;
}
static const char *set_lockfile(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_lock_fname = arg;
return NULL;
}
static const char *set_daemons_to_start(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_to_start = atoi(arg);
return NULL;
}
static const char *set_min_spare_threads(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
min_spare_threads = atoi(arg);
if (min_spare_threads <= 0) {
fprintf(stderr, "WARNING: detected MinSpareThreads set to non-positive.\n");
fprintf(stderr, "Resetting to 1 to avoid almost certain Apache failure.\n");
fprintf(stderr, "Please read the documentation.\n");
min_spare_threads = 1;
}
return NULL;
}
static const char *set_max_spare_threads(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
max_spare_threads = atoi(arg);
return NULL;
}
static const char *set_server_limit (cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_daemons_limit = atoi(arg);
if (ap_daemons_limit > HARD_SERVER_LIMIT) {
fprintf(stderr, "WARNING: MaxClients of %d exceeds compile time limit "
"of %d servers,\n", ap_daemons_limit, HARD_SERVER_LIMIT);
fprintf(stderr, " lowering MaxClients to %d. To increase, please "
"see the\n", HARD_SERVER_LIMIT);
fprintf(stderr, " HARD_SERVER_LIMIT define in src/include/httpd.h.\n");
ap_daemons_limit = HARD_SERVER_LIMIT;
}
else if (ap_daemons_limit < 1) {
fprintf(stderr, "WARNING: Require MaxClients > 0, setting to 1\n");
ap_daemons_limit = 1;
}
return NULL;
}
static const char *set_threads_per_child (cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_threads_per_child = atoi(arg);
if (ap_threads_per_child > HARD_THREAD_LIMIT) {
fprintf(stderr, "WARNING: ThreadsPerChild of %d exceeds compile time"
"limit of %d threads,\n", ap_threads_per_child,
HARD_THREAD_LIMIT);
fprintf(stderr, " lowering ThreadsPerChild to %d. To increase, please"
"see the\n", HARD_THREAD_LIMIT);
fprintf(stderr, " HARD_THREAD_LIMIT define in src/include/httpd.h.\n");
}
else if (ap_threads_per_child < 1) {
fprintf(stderr, "WARNING: Require ThreadsPerChild > 0, setting to 1\n");
ap_threads_per_child = 1;
}
return NULL;
}
static const char *set_max_requests(cmd_parms *cmd, void *dummy, char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
ap_max_requests_per_child = atoi(arg);
return NULL;
}
static const char *set_coredumpdir (cmd_parms *cmd, void *dummy, char *arg)
{
struct stat finfo;
const char *fname;
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
fname = ap_server_root_relative(cmd->pool, arg);
/* ZZZ change this to the AP func FileInfo*/
if ((stat(fname, &finfo) == -1) || !S_ISDIR(finfo.st_mode)) {
return ap_pstrcat(cmd->pool, "CoreDumpDirectory ", fname,
" does not exist or is not a directory", NULL);
}
ap_cpystrn(ap_coredump_dir, fname, sizeof(ap_coredump_dir));
return NULL;
}
struct ap_thread_mutex {
pthread_mutex_t mutex;
};
API_EXPORT(ap_thread_mutex *) ap_thread_mutex_new(void)
{
ap_thread_mutex *mtx;
mtx = malloc(sizeof(ap_thread_mutex));
pthread_mutex_init(&(mtx->mutex), NULL);
return mtx;
}
API_EXPORT(void) ap_thread_mutex_lock(ap_thread_mutex *mtx)
{
/* Ignoring error conditions here. :( */
pthread_mutex_lock(&(mtx->mutex));
}
API_EXPORT(void) ap_thread_mutex_unlock(ap_thread_mutex *mtx)
{
/* Here too. */
pthread_mutex_unlock(&(mtx->mutex));
}
API_EXPORT(void) ap_thread_mutex_destroy(ap_thread_mutex *mtx)
{
/* Here too. */
pthread_mutex_destroy(&(mtx->mutex));
free(mtx);
}
static const command_rec mpmt_pthread_cmds[] = {
UNIX_DAEMON_COMMANDS
LISTEN_COMMANDS
{ "PidFile", set_pidfile, NULL, RSRC_CONF, TAKE1,
"A file for logging the server process ID"},
{ "ScoreBoardFile", set_scoreboard, NULL, RSRC_CONF, TAKE1,
"A file for Apache to maintain runtime process management information"},
{ "LockFile", set_lockfile, NULL, RSRC_CONF, TAKE1,
"The lockfile used when Apache needs to lock the accept() call"},
{ "StartServers", set_daemons_to_start, NULL, RSRC_CONF, TAKE1,
"Number of child processes launched at server startup" },
{ "MinSpareThreads", set_min_spare_threads, NULL, RSRC_CONF, TAKE1,
"Minimum number of idle children, to handle request spikes" },
{ "MaxSpareThreads", set_max_spare_threads, NULL, RSRC_CONF, TAKE1,
"Maximum number of idle children" },
{ "MaxClients", set_server_limit, NULL, RSRC_CONF, TAKE1,
"Maximum number of children alive at the same time" },
{ "ThreadsPerChild", set_threads_per_child, NULL, RSRC_CONF, TAKE1,
"Number of threads each child creates" },
{ "MaxRequestsPerChild", set_max_requests, NULL, RSRC_CONF, TAKE1,
"Maximum number of requests a particular child serves before dying." },
{ "CoreDumpDirectory", set_coredumpdir, NULL, RSRC_CONF, TAKE1,
"The location of the directory Apache changes to before dumping core" },
{ NULL }
};
module MODULE_VAR_EXPORT mpm_mpmt_pthread_module = {
STANDARD20_MODULE_STUFF,
NULL, /* post_config */
NULL, /* open_logs */
NULL, /* child_init */
NULL, /* create per-directory config structure */
NULL, /* merge per-directory config structures */
NULL, /* create per-server config structure */
NULL, /* merge per-server config structures */
mpmt_pthread_cmds, /* command table */
NULL, /* handlers */
NULL, /* check auth */
NULL, /* check access */
mpmt_pthread_hooks /* register_hooks */
};
/* force Expat to be linked into the server executable */
#if defined(USE_EXPAT) && !defined(SHARED_CORE_BOOTSTRAP)
#include "xmlparse.h"
const XML_LChar *suck_in_expat(void);
const XML_LChar *suck_in_expat(void)
{
return XML_ErrorString(XML_ERROR_NONE);
}
#endif /* USE_EXPAT */