blob: 93e310a2917f0d1edb0912c6c87f713536e31496 [file] [log] [blame] [view]
# Learning Resources
Several channels are available to get started with Hamilton, learn advanced usage, and participate in the latest feature development.
## đź“’ User Guide Documentation
The [user guide](../concepts/index.rst) gives a complete overview of Hamilton's features.
## 📚 Reference Documentation
The [reference documentation](../reference/dataflows/index.rst) details Hamilton's public API.
## ✍ tryhamilton.dev
The [tryhamilton.dev](https://tryhamilton.dev) website provides interactive tutorials in-browser to learn specific Hamilton concepts.
## đź›  Dataflow Hub
The [Hamilton Dataflow Hub](https://hub.dagworks.io/docs/) hosts user-created dataflows that are easy to download and reuse in your project.
## đź’ˇ Blog
The [DAGWorks Blog](https://blog.dagworks.io/) publishes articles on problems Hamilton helps solve, reference architectures, and new features.
## đź‘‹ Slack
The [Slack channel](https://join.slack.com/t/hamilton-opensource/shared_invite/zt-2niepkra8-DGKGf_tTYhXuJWBTXtIs4g) is the ideal place to ask questions, request features, and give feedback.
## 📣 Talks
See [our youtube for the most up to date recordings](https://www.youtube.com/@DAGWorks-Inc/playlists) - we are slow to list them here.
* 2024-02    Hamilton Meet-up for February
* [Recording](https://www.youtube.com/watch?v=ks672Lm0CJo.)
* [Slides](https://github.com/skrawcz/talks/files/14351139/Hamilton.February.2024.Meetup.pdf)
* 2023-12    Why you should build your GenAI/LLM apps using Hamilton. [AICamp End of Year in SF](https://www.aicamp.ai/event/eventdetails/W2023121217)
* [Recording](https://youtu.be/IwWixrjhkZU?si=DVa72Zr4iD-hibS5&t=7602)
* [Slides](https://github.com/skrawcz/talks/files/13666470/Why.you.should.build.your.GenAI_LLM.apps.using.Hamilton.pdf)
* 2023-12    Bridging Classic ML Pipelines with the World of LLMs. [PyData Global](https://global2023.pydata.org/cfp/talk/3REDA9/)
* [Slides](https://github.com/skrawcz/talks/files/13666479/Bridging.Classic.ML.Pipelines.with.the.World.of.LLMs.1.pdf)
* 2023-11    Hamilton: Natively bringing software engineering best practices to python data transformations. [Scale by the Bay](https://www.scale.bythebay.io/).
* [Recording](https://www.youtube.com/watch?v=gK4-6X0h7PU)
* [Slides](https://github.com/skrawcz/talks/files/13969784/Scale.By.The.Bay.-.Hamilton_.Natively.bringing.SWE.best.practices.to.python.data.transformations.pdf)
* 2023-09    Hamilton: Natively bringing software engineering best practices to python data transformations. [Bay Area Python Interest Group (BAYPIGgies)](https://www.meetup.com/baypiggies/events/296283989/)
* [Slides](https://github.com/skrawcz/talks/files/12785978/BayPIGgies_.Hamilton.Talk.pdf)
* 2023-08    dbt + Hamilton: Enabling you to maintain complex Python within dbt models. [MDSFest'23](https://www.mdsfest.com/)
* [Recording](https://www.youtube.com/watch?v=ZM-kM8DqlaQ&list=PLdVpUmZrh0QpDi07ENp3FD5aTFuTTtWnP)
* [Slides](https://github.com/skrawcz/talks/files/12431755/dbt.%2B.Hamilton_.Enabling.you.to.maintain.complex.python.within.dbt.models.pdf)
* 2023-06    Hamilton: an OS tool to add to your LLM App toolbelt. LLM Avalanche.
* [Slides](https://github.com/skrawcz/talks/files/11899349/Hamilton_.an.OS.tool.to.add.to.your.LLM.App.toolbelt.pdf)
* 2023-06    Feature Engineering with Hamilton: Portability & Lineage. [Budapest ML Forum June 2023](https://budapestml.hu/2023/en/)
* [Slides](https://github.com/skrawcz/talks/files/11690901/Stefan_Krawczyk_BudapestTalkJune2023_FeatureEngineeringwith.Hamilton_Portability.Lineage.pdf)
* 2023-06    British Cycling Data Platform in Python. Manchester PyData Meetup
* [Slides](https://github.com/skrawcz/talks/files/11899331/PyData.British.Cycling.7.June.2023.pdf)
* Co-presented with Peter Robinson, and Murray Tait.
* 2023-04    Lightweight Lineage with Hamilton. PyData Seattle
* [Slides](https://github.com/skrawcz/talks/files/11399972/PyData-Seattl-Lightning-Talk-2023-Lighweight-Lineage-with-Hamilton.pdf)
* 2023-01    Hamilton: Natively bringing software engineering best practices to python data transformations. AI Camp Meetup San Jose
* [Slides](https://github.com/skrawcz/talks/files/10830349/Hamilton_.Natively.bringing.software.engineering.best.practices.to.python.data.transformations.-.January.2023.pdf)
* 2022-10    Hamilton: an open source, declarative, micro-framework for clean & robust feature transform code in Python. Feature Store Summit
* [Event](https://www.featurestoresummit.com/)
* [Slides](https://github.com/skrawcz/talks/files/9759661/FS.Summit.2022.-.Hamilton.pdf)
* 2022-09    Hamilton: enabling software engineering best practices for data transformations via generalized dataflow graphs. DEco - First International Workshop on Data Ecosystems
* [Event](https://dbis.rwth-aachen.de/DEco22/)
* [Slides](https://github.com/skrawcz/talks/files/9550914/Submitted.-.DEco.2022_.Hamilton_.enabling.software.engineering.best.practices.for.data.transformations.via.generalized.dataflow.graphs.1.pdf)
* 2022-09    Hamilton: a modular open source declarative paradigm for high level modeling of dataflows. CDMS - First International Workshop on Composable Data Management Systems
* [Event](https://cdmsworkshop.github.io/2022/)
* [Slides](https://github.com/skrawcz/talks/files/9550939/CDMS.2022.-.Hamilton_.a.modular.open.source.declarative.paradigm.for.high.level.modeling.of.dataflows.1.pdf)
* [Paper](https://cdmsworkshop.github.io/2022/Proceedings/ShortPapers/Paper6_StefanKrawczyk.pdf)
* 2022-08    Hamilton: A Python Micro-Framework for tidy scalable Pandas. Scalable Pandas Meetup
* [Recording](https://www.youtube.com/watch?v=m_rjCzxQj4c&ab_channel=Ponder)
* [Slides](https://github.com/skrawcz/talks/files/9428705/Hamilton.%40.Ponder.Pandas.meetup.pdf)
* 2022-08    Scalable feature engineering with Hamilton on Ray. Ray Summit
* [Slides](https://github.com/skrawcz/talks/files/9411082/Submitted.Slides.-.Ray.Summit_.Scalable.feature.engineering.with.Hamilton.on.Ray.pdf)
* 2022-07    Hamilton: A Python Micro-Framework for Data / Feature Engineering. MLOPsWorld Bay Area
* [Slides](https://github.com/skrawcz/talks/files/9213924/Hamilton_.A.Python.Micro-Framework.for.Data._.Feature.Engineering.pdf)
* 2022-05    Hamilton: a python micro-framework for data / feature engineering at Stitch Fix. AICamp
* [Recording](https://www.youtube.com/watch?v=PDGIt37dov8)
* [Slides](https://github.com/skrawcz/talks/files/8691633/AICamp.Hamilton.Presentation.pdf)
* 2022-02    [Open Source] Hamilton, a micro framework for creating dataframes, and its application at Stitch Fix. Apply(Meetup)
* [Event](https://www.applyconf.com/agenda/open-source-hamilton-a-micro-framework-for-creating-dataframes-and-its-application-at-stitch-fix/).
* [Recording](https://www.youtube.com/watch?v=CHfrT5OVjlM)
* [Slides](https://github.com/skrawcz/talks/blob/main/Public%20ApplyConf2022%20-%20%5BOpen%20Source%5D%20Hamilton%2C%20a%20micro%20framework%20for%20creating%20dataframes%2C%20and%20its%20application%20at%20Stitch%20Fix.pdf)
* 2021-12    Hamilton an open source micro framework for creating dataframes. SF Python Meetup
* [Recording](https://www.youtube.com/watch?v=_XUYfwougz4)
* [Slides](https://github.com/skrawcz/talks/files/8944605/Python.Meetup.Dec.2021.-.Hamilton_.an.open.source.micro.framework.for.creating.dataframes.pdf)
## đź“° External Blogs
For the latest blog posts, see the [DAGWorks's Blog](https://blog.dagworks.io/).
* 2024-03    [RAG: ingestion and chunking using Hamilton and scaling to Ray, Dask, or PySpark](https://blog.dagworks.io/p/rag-ingestion-and-chunking-using)
* 2024-02    [A command line tool to improve your development workflow](https://blog.dagworks.io/p/a-command-line-tool-to-improve-your)
* 2024-02    [Monthly Meetup Recap and office hours](https://blog.dagworks.io/p/monthly-hamilton-meetup-and-office)
* 2024-02    [Using IPython Jupyter Magic commands to improve the notebook experience](https://blog.dagworks.io/p/using-ipython-jupyter-magic-commands)
* 2024-02    [Building a lightweight experiment manager](https://blog.dagworks.io/p/building-a-lightweight-experiment)
* 2024-01    [Customizing Hamilton’s Execution with the new Lifecycle API](https://blog.dagworks.io/p/customizing-hamiltons-execution-with)
* 2024-01    [How well-structured should your data code be?](https://blog.dagworks.io/p/how-well-structured-should-your-data)
* 2024-01    [From Dev to Prod: a ML Pipeline Reference Post](https://blog.dagworks.io/p/from-dev-to-prod-a-ml-pipeline-reference)
* 2023-12    [Winning over hearts and minds at work: ADKAR my favorite change management approach](https://blog.dagworks.io/p/winning-hearts-and-minds-at-work)
* 2023-11    [🚀 We’re launching the Hamilton Dataflow Hub!](https://blog.dagworks.io/p/were-launching-the-hamilton-dataflow)
* 2023-10    [Separate data I/O from transformation -- your future self will thank you.](https://blog.dagworks.io/p/separate-data-io-from-transformation)
* 2023-09    [Retrieval augmented generation (RAG) with Streamlit, FastAPI, Weaviate, and Hamilton!](https://blog.dagworks.io/p/retrieval-augmented-generation-reference-arch)
* 2023-09    [LLMOps: Production prompt engineering patterns with Hamilton](https://blog.dagworks.io/p/llmops-production-prompt-engineering)
* 2023-09    [Feature Engineering with Hamilton](https://blog.dagworks.io/p/feature-engineering-with-hamilton)
* 2023-08    [Expressing PySpark Transformations Declaratively with Hamilton](https://blog.dagworks.io/p/expressing-pyspark-transformations)
* 2023-08    [Containerized PDF Summarizer with FastAPI and Hamilton](https://blog.dagworks.io/p/containerized-pdf-summarizer-with)
* 2023-08    [Dynamic DAGs: Counting Stars with Hamilton](https://blog.dagworks.io/p/counting-stars-with-hamilton)
* 2023-08    [Featurization: Integrating Hamilton with Feast](https://blog.dagworks.io/p/featurization-integrating-hamilton)
* 2023-07    [Simplify Prefect Workflow Creation and Maintenance with Hamilton](https://blog.dagworks.io/p/simplify-prefect-workflow-creation)
* 2023-07    [Building a maintainable and modular LLM application stack with Hamilton](https://blog.dagworks.io/p/building-a-maintainable-and-modular)
* 2023-06    [Simplify Airflow DAG Creation and Maintenance with Hamilton](https://blog.dagworks.io/p/supercharge-your-airflow-dag-with)
* 2023-05    [Lineage + Hamilton in 10 minutes](https://blog.dagworks.io/p/lineage-hamilton-in-10-minutes-c2b8a944e2e6)
* 2022-11    [Hamilton + DBT in 5 minutes](https://blog.dagworks.io/p/hamilton-dbt-in-5-minutes-62e4cb63f08f)
* 2022-07    [Tidy production pandas with Hamilton](https://towardsdatascience.com/tidy-production-pandas-with-hamilton-3b759a2bf562)
* 2022-06    [Developing Scalable Feature Engineering DAGs with Metaflow & Hamilton](https://outerbounds.com/blog/developing-scalable-feature-engineering-dags)
* 2022-05    [Hamilton backstory and intro post on TDS](https://towardsdatascience.com/functions-dags-introducing-hamilton-a-microframework-for-dataframe-generation-more-8e34b84efc1d)
* 2022-05    [Hamilton + Pandas in five minutes](https://towardsdatascience.com/how-to-use-hamilton-with-pandas-in-5-minutes-89f63e5af8f5)
* 2022-05    [Iterating with Hamilton in a Notebook](https://towardsdatascience.com/how-to-use-hamilton-with-pandas-in-5-minutes-89f63e5af8f5)
## 🎙 Podcasts
* 2024-03    [Hamilton mention in Real Python, about ipython magic command post](https://realpython.com/podcasts/rpp/196/)
* 2023-06    [Exploring the Intersection of DAGs, ML Code, and Complex Code Bases: An Elegant Solution Unveiled with Stefan Krawczyk of DAGWorks](https://datastackshow.com/podcast/exploring-the-intersection-of-dags-ml-code-and-complex-code-bases-an-elegant-solution-unveiled-with-stefan-krawczyk-of-dagworks/)
* 2022-08    [S01 E08 - MLOps Week 8: The MLOps Mindset with Stefan Krawczyk](https://rss.com/podcasts/mlops-weekly/571949/)
* 2022-04    [MLOps dla 100 data scientistĂłw](https://nieliniowy.pl/mlops-dla-100-data-scientistow-stefan-krawczyk-stitch-fix/) (in Polish)
* 2021-09    [Aggressively Helpful Platform teams](https://www.youtube.com/watch?v=az8lXG9v4uo)