blob: 06e9df1279c9d6a3d133161552c94f8e543207cd [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.codehaus.groovy.control;
import groovy.lang.Tuple2;
import org.apache.groovy.ast.tools.ExpressionUtils;
import org.codehaus.groovy.GroovyBugError;
import org.codehaus.groovy.ast.ASTNode;
import org.codehaus.groovy.ast.AnnotatedNode;
import org.codehaus.groovy.ast.AnnotationNode;
import org.codehaus.groovy.ast.ClassCodeExpressionTransformer;
import org.codehaus.groovy.ast.ClassHelper;
import org.codehaus.groovy.ast.ClassNode;
import org.codehaus.groovy.ast.CompileUnit;
import org.codehaus.groovy.ast.CompileUnit.ConstructedOuterNestedClassNode;
import org.codehaus.groovy.ast.DynamicVariable;
import org.codehaus.groovy.ast.FieldNode;
import org.codehaus.groovy.ast.GenericsType;
import org.codehaus.groovy.ast.GenericsType.GenericsTypeName;
import org.codehaus.groovy.ast.ImportNode;
import org.codehaus.groovy.ast.InnerClassNode;
import org.codehaus.groovy.ast.MethodNode;
import org.codehaus.groovy.ast.ModuleNode;
import org.codehaus.groovy.ast.Parameter;
import org.codehaus.groovy.ast.PropertyNode;
import org.codehaus.groovy.ast.Variable;
import org.codehaus.groovy.ast.VariableScope;
import org.codehaus.groovy.ast.expr.AnnotationConstantExpression;
import org.codehaus.groovy.ast.expr.ArgumentListExpression;
import org.codehaus.groovy.ast.expr.BinaryExpression;
import org.codehaus.groovy.ast.expr.CastExpression;
import org.codehaus.groovy.ast.expr.ClassExpression;
import org.codehaus.groovy.ast.expr.ClosureExpression;
import org.codehaus.groovy.ast.expr.ConstantExpression;
import org.codehaus.groovy.ast.expr.ConstructorCallExpression;
import org.codehaus.groovy.ast.expr.DeclarationExpression;
import org.codehaus.groovy.ast.expr.Expression;
import org.codehaus.groovy.ast.expr.ListExpression;
import org.codehaus.groovy.ast.expr.MapEntryExpression;
import org.codehaus.groovy.ast.expr.MapExpression;
import org.codehaus.groovy.ast.expr.MethodCallExpression;
import org.codehaus.groovy.ast.expr.PropertyExpression;
import org.codehaus.groovy.ast.expr.SpreadMapExpression;
import org.codehaus.groovy.ast.expr.VariableExpression;
import org.codehaus.groovy.ast.stmt.BlockStatement;
import org.codehaus.groovy.ast.stmt.CatchStatement;
import org.codehaus.groovy.ast.stmt.ForStatement;
import org.codehaus.groovy.ast.stmt.Statement;
import org.codehaus.groovy.control.ClassNodeResolver.LookupResult;
import org.codehaus.groovy.runtime.memoize.EvictableCache;
import org.codehaus.groovy.runtime.memoize.UnlimitedConcurrentCache;
import org.codehaus.groovy.syntax.Types;
import org.codehaus.groovy.transform.trait.Traits;
import org.objectweb.asm.Opcodes;
import java.lang.annotation.Annotation;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.reflect.Modifier;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.Objects;
import java.util.Set;
import java.util.function.BiConsumer;
import java.util.function.Predicate;
import static groovy.lang.Tuple.tuple;
import static org.codehaus.groovy.ast.tools.ClosureUtils.getParametersSafe;
/**
* Visitor to resolve Types and convert VariableExpression to
* ClassExpressions if needed. The ResolveVisitor will try to
* find the Class for a ClassExpression and prints an error if
* it fails to do so. Constructions like C[], foo as C, (C) foo
* will force creation of a ClassExpression for C
* <p>
* Note: the method to start the resolving is startResolving(ClassNode, SourceUnit).
*/
public class ResolveVisitor extends ClassCodeExpressionTransformer {
// note: BigInteger and BigDecimal are also imported by default
// `java.util` is used much frequently than other two java packages(`java.io` and `java.net`), so place java.util before the two packages
public static final String[] DEFAULT_IMPORTS = {"java.lang.", "java.util.", "java.io.", "java.net.", "groovy.lang.", "groovy.util."};
private static final String BIGINTEGER_STR = "BigInteger";
private static final String BIGDECIMAL_STR = "BigDecimal";
public static final String QUESTION_MARK = "?";
public static final String[] EMPTY_STRING_ARRAY = new String[0];
private ClassNode currentClass;
private final CompilationUnit compilationUnit;
private SourceUnit source;
private VariableScope currentScope;
private boolean isTopLevelProperty = true;
private boolean inPropertyExpression = false;
private boolean inClosure = false;
private final Map<ClassNode, ClassNode> possibleOuterClassNodeMap = new HashMap<>();
private Map<GenericsTypeName, GenericsType> genericParameterNames = new HashMap<>();
private final Set<FieldNode> fieldTypesChecked = new HashSet<>();
private boolean checkingVariableTypeInDeclaration;
private ImportNode currImportNode;
private MethodNode currentMethod;
private ClassNodeResolver classNodeResolver;
/**
* A ConstructedNestedClass consists of an outer class and a name part, denoting a
* nested class with an unknown number of levels down. This allows resolve tests to
* skip this node for further inner class searches and combinations with imports, since
* the outer class we know is already resolved.
*/
private static class ConstructedNestedClass extends ClassNode {
final ClassNode knownEnclosingType;
public ConstructedNestedClass(final ClassNode outer, final String inner) {
super(outer.getName() + "$" + inner.replace('.', '$'), Opcodes.ACC_PUBLIC, ClassHelper.OBJECT_TYPE);
this.knownEnclosingType = outer;
this.isPrimaryNode = false;
}
@Override
public String getUnresolvedName() {
// outer class (aka knownEnclosingType) may have aliased name that should be reflected here too
return super.getUnresolvedName().replace(knownEnclosingType.getName(), knownEnclosingType.getUnresolvedName());
}
@Override
public boolean hasPackageName() {
if (redirect() != this) return super.hasPackageName();
return knownEnclosingType.hasPackageName();
}
@Override
public String setName(final String name) {
if (redirect() != this) {
return super.setName(name);
} else {
throw new GroovyBugError("ConstructedNestedClass#setName should not be called");
}
}
}
/**
* we use ConstructedClassWithPackage to limit the resolving the compiler
* does when combining package names and class names. The idea
* that if we use a package, then we do not want to replace the
* '.' with a '$' for the package part, only for the class name
* part. There is also the case of a imported class, so this logic
* can't be done in these cases...
*/
private static class ConstructedClassWithPackage extends ClassNode {
final String prefix;
String className;
public ConstructedClassWithPackage(final String pkg, final String name) {
super(pkg + name, Opcodes.ACC_PUBLIC, ClassHelper.OBJECT_TYPE);
isPrimaryNode = false;
this.prefix = pkg;
this.className = name;
}
@Override
public String getName() {
if (redirect() != this)
return super.getName();
return prefix + className;
}
@Override
public boolean hasPackageName() {
if (redirect() != this)
return super.hasPackageName();
return className.indexOf('.') != -1;
}
@Override
public String setName(final String name) {
if (redirect() != this) {
return super.setName(name);
} else {
throw new GroovyBugError("ConstructedClassWithPackage#setName should not be called");
}
}
}
/**
* we use LowerCaseClass to limit the resolving the compiler
* does for vanilla names starting with a lower case letter. The idea
* that if we use a vanilla name with a lower case letter, that this
* is in most cases no class. If it is a class the class needs to be
* imported explicitly. The effect is that in an expression like
* "def foo = bar" we do not have to use a loadClass call to check the
* name foo and bar for being classes. Instead we will ask the module
* for an alias for this name which is much faster.
*/
private static class LowerCaseClass extends ClassNode {
final String className;
public LowerCaseClass(final String name) {
super(name, Opcodes.ACC_PUBLIC, ClassHelper.OBJECT_TYPE);
isPrimaryNode = false;
this.className = name;
}
@Override
public String getName() {
if (redirect() != this)
return super.getName();
return className;
}
@Override
public boolean hasPackageName() {
if (redirect() != this)
return super.hasPackageName();
return false;
}
@Override
public String setName(final String name) {
if (redirect() != this) {
return super.setName(name);
} else {
throw new GroovyBugError("LowerCaseClass#setName should not be called");
}
}
}
public ResolveVisitor(final CompilationUnit compilationUnit) {
this.compilationUnit = compilationUnit;
setClassNodeResolver(new ClassNodeResolver());
}
public void setClassNodeResolver(final ClassNodeResolver classNodeResolver) {
this.classNodeResolver = classNodeResolver;
}
public void startResolving(final ClassNode node, final SourceUnit source) {
this.source = source;
visitClass(node);
}
@Override
protected SourceUnit getSourceUnit() {
return source;
}
@Override
protected void visitConstructorOrMethod(final MethodNode node, final boolean isConstructor) {
VariableScope oldScope = currentScope;
currentScope = node.getVariableScope();
Map<GenericsTypeName, GenericsType> oldPNames = genericParameterNames;
genericParameterNames = node.isStatic() && !Traits.isTrait(node.getDeclaringClass())
? new HashMap<>() : new HashMap<>(genericParameterNames);
resolveGenericsHeader(node.getGenericsTypes());
Parameter[] paras = node.getParameters();
for (Parameter p : paras) {
p.setInitialExpression(transform(p.getInitialExpression()));
resolveOrFail(p.getType(), p.getType());
visitAnnotations(p);
}
ClassNode[] exceptions = node.getExceptions();
for (ClassNode t : exceptions) {
resolveOrFail(t, node);
}
resolveOrFail(node.getReturnType(), node);
MethodNode oldCurrentMethod = currentMethod;
currentMethod = node;
super.visitConstructorOrMethod(node, isConstructor);
currentMethod = oldCurrentMethod;
genericParameterNames = oldPNames;
currentScope = oldScope;
}
@Override
public void visitField(final FieldNode node) {
ClassNode t = node.getType();
if (!fieldTypesChecked.contains(node)) {
resolveOrFail(t, node);
}
super.visitField(node);
}
@Override
public void visitProperty(final PropertyNode node) {
Map<GenericsTypeName, GenericsType> oldPNames = genericParameterNames;
if (node.isStatic() && !Traits.isTrait(node.getDeclaringClass())) {
genericParameterNames = new HashMap<>();
}
ClassNode t = node.getType();
resolveOrFail(t, node);
super.visitProperty(node);
fieldTypesChecked.add(node.getField());
genericParameterNames = oldPNames;
}
private boolean resolveToInner(final ClassNode type) {
// we do not do our name mangling to find an inner class
// if the type is a ConstructedClassWithPackage, because in this case we
// are resolving the name at a different place already
if (type instanceof ConstructedClassWithPackage) return false;
if (type instanceof ConstructedNestedClass) return false;
String name = type.getName();
String saved = name;
while (name.lastIndexOf('.') != -1) {
name = replaceLastPointWithDollar(name);
type.setName(name);
if (resolve(type)) {
return true;
}
}
type.setName(saved);
return false;
}
private void resolveOrFail(final ClassNode type, final String msg, final ASTNode node) {
if (resolve(type)) return;
if (resolveToInner(type)) return;
if (resolveToOuterNested(type)) return;
addError("unable to resolve class " + type.toString(false) + msg, node);
}
// GROOVY-7812(#1): Static inner classes cannot be accessed from other files when running by 'groovy' command
// if the type to resolve is an inner class and it is in an outer class which is not resolved,
// we set the resolved type to a placeholder class node, i.e. a ConstructedOuterNestedClass instance
// when resolving the outer class later, we set the resolved type of ConstructedOuterNestedClass instance to the actual inner class node(SEE GROOVY-7812(#2))
private boolean resolveToOuterNested(final ClassNode type) {
CompileUnit compileUnit = currentClass.getCompileUnit();
String typeName = type.getName();
BiConsumer<ConstructedOuterNestedClassNode, ClassNode> setRedirectListener = (s, c) -> type.setRedirect(s);
ModuleNode module = currentClass.getModule();
for (ImportNode importNode : module.getStaticImports().values()) {
String importFieldName = importNode.getFieldName();
String importAlias = importNode.getAlias();
if (!typeName.equals(importAlias)) continue;
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = tryToConstructOuterNestedClassNodeViaStaticImport(compileUnit, importNode, importFieldName, setRedirectListener);
if (null != constructedOuterNestedClassNode) {
compileUnit.addClassNodeToResolve(constructedOuterNestedClassNode);
return true;
}
}
for (Map.Entry<String, ClassNode> entry : compileUnit.getClassesToCompile().entrySet()) {
ClassNode outerClassNode = entry.getValue();
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = tryToConstructOuterNestedClassNode(type, outerClassNode, setRedirectListener);
if (null != constructedOuterNestedClassNode) {
compileUnit.addClassNodeToResolve(constructedOuterNestedClassNode);
return true;
}
}
boolean toResolveFurther = false;
for (ImportNode importNode : module.getStaticStarImports().values()) {
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = tryToConstructOuterNestedClassNodeViaStaticImport(compileUnit, importNode, typeName, setRedirectListener);
if (null != constructedOuterNestedClassNode) {
compileUnit.addClassNodeToResolve(constructedOuterNestedClassNode);
toResolveFurther = true; // do not return here to try all static star imports because currently we do not know which outer class the class to resolve is declared in.
}
}
if (toResolveFurther) return true;
// GROOVY-9243
toResolveFurther = false;
if (typeName.indexOf('.') == -1) {
Map<String, ClassNode> hierClasses = findHierClasses(currentClass);
for (ClassNode cn : hierClasses.values()) {
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = tryToConstructOuterNestedClassNodeForBaseType(compileUnit, typeName, cn, setRedirectListener);
if (null != constructedOuterNestedClassNode) {
compileUnit.addClassNodeToResolve(constructedOuterNestedClassNode);
toResolveFurther = true;
}
}
}
return toResolveFurther;
}
private ConstructedOuterNestedClassNode tryToConstructOuterNestedClassNodeViaStaticImport(final CompileUnit compileUnit, final ImportNode importNode, final String typeName, final BiConsumer<ConstructedOuterNestedClassNode, ClassNode> setRedirectListener) {
String importClassName = importNode.getClassName();
ClassNode outerClassNode = compileUnit.getClass(importClassName);
if (null == outerClassNode) return null;
String outerNestedClassName = importClassName + "$" + typeName.replace('.', '$');
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = new ConstructedOuterNestedClassNode(outerClassNode, outerNestedClassName);
constructedOuterNestedClassNode.addSetRedirectListener(setRedirectListener);
return constructedOuterNestedClassNode;
}
private ConstructedOuterNestedClassNode tryToConstructOuterNestedClassNode(final ClassNode type, final ClassNode outerClassNode, final BiConsumer<ConstructedOuterNestedClassNode, ClassNode> setRedirectListener) {
String outerClassName = outerClassNode.getName();
for (String typeName = type.getName(), ident = typeName; ident.indexOf('.') != -1; ) {
ident = ident.substring(0, ident.lastIndexOf('.'));
if (outerClassName.endsWith(ident)) {
String outerNestedClassName = outerClassName + typeName.substring(ident.length()).replace('.', '$');
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = new ConstructedOuterNestedClassNode(outerClassNode, outerNestedClassName);
constructedOuterNestedClassNode.addSetRedirectListener(setRedirectListener);
return constructedOuterNestedClassNode;
}
}
return null;
}
private ConstructedOuterNestedClassNode tryToConstructOuterNestedClassNodeForBaseType(final CompileUnit compileUnit, final String typeName, final ClassNode cn, final BiConsumer<ConstructedOuterNestedClassNode, ClassNode> setRedirectListener) {
if (!compileUnit.getClassesToCompile().containsValue(cn)) return null;
String outerNestedClassName = cn.getName() + "$" + typeName;
ConstructedOuterNestedClassNode constructedOuterNestedClassNode = new ConstructedOuterNestedClassNode(cn, outerNestedClassName);
constructedOuterNestedClassNode.addSetRedirectListener(setRedirectListener);
return constructedOuterNestedClassNode;
}
private void resolveOrFail(final ClassNode type, final ASTNode node, final boolean prefereImports) {
resolveGenericsTypes(type.getGenericsTypes());
if (prefereImports && resolveAliasFromModule(type)) return;
resolveOrFail(type, node);
}
private void resolveOrFail(final ClassNode type, final ASTNode node) {
resolveOrFail(type, "", node);
}
protected boolean resolve(final ClassNode type) {
return resolve(type, true, true, true);
}
protected boolean resolve(final ClassNode type, final boolean testModuleImports, final boolean testDefaultImports, final boolean testStaticInnerClasses) {
resolveGenericsTypes(type.getGenericsTypes());
if (type.isResolved() || type.isPrimaryClassNode()) return true;
if (type.isArray()) {
ClassNode element = type.getComponentType();
boolean resolved = resolve(element, testModuleImports, testDefaultImports, testStaticInnerClasses);
if (resolved) {
ClassNode cn = element.makeArray();
type.setRedirect(cn);
}
return resolved;
}
// test if vanilla name is current class name
if (currentClass == type) return true;
String typeName = type.getName();
GenericsType genericsType = genericParameterNames.get(new GenericsTypeName(typeName));
if (genericsType != null) {
type.setRedirect(genericsType.getType());
type.setGenericsTypes(new GenericsType[]{genericsType});
type.setGenericsPlaceHolder(true);
return true;
}
if (currentClass.getNameWithoutPackage().equals(typeName)) {
type.setRedirect(currentClass);
return true;
}
return (!type.hasPackageName() && resolveNestedClass(type)) ||
resolveFromModule(type, testModuleImports) ||
resolveFromCompileUnit(type) ||
(testDefaultImports && !type.hasPackageName() && resolveFromDefaultImports(type)) ||
resolveToOuter(type) ||
(testStaticInnerClasses && type.hasPackageName() && resolveFromStaticInnerClasses(type));
}
protected boolean resolveNestedClass(final ClassNode type) {
if (type instanceof ConstructedNestedClass || type instanceof ConstructedClassWithPackage) return false;
// We have for example a class name A, are in class X
// and there is a nested class A$X. we want to be able
// to access that class directly, so A becomes a valid
// name in X.
// GROOVY-4043: Do this check up the hierarchy, if needed.
for (ClassNode classToCheck : findHierClasses(currentClass).values()) {
if (setRedirect(type, classToCheck)) return true;
}
// GROOVY-8947: Resolve non-static inner class outside of outer class.
ClassNode possibleOuterClassNode = possibleOuterClassNodeMap.get(type);
if (possibleOuterClassNode != null) {
if (setRedirect(type, possibleOuterClassNode)) return true;
}
// Another case we want to check here is if we are in a
// nested class A$B$C and want to access B without
// qualifying it by A.B. A alone will work, since that
// is the qualified (minus package) name of that class
// anyway.
List<ClassNode> outerClasses = currentClass.getOuterClasses();
if (!outerClasses.isEmpty()) {
// Since we have B and want to get A we start with the most
// outer class, put them together and then see if that does
// already exist. In case of B from within A$B we are done
// after the first step already. In case of for example
// A.B.C.D.E.F and accessing E from F we test A$E=failed,
// A$B$E=failed, A$B$C$E=fail, A$B$C$D$E=success.
for (ListIterator<ClassNode> it = outerClasses.listIterator(outerClasses.size()); it.hasPrevious();) {
ClassNode outerClass = it.previous();
if (setRedirect(type, outerClass)) return true;
}
}
return false;
}
private boolean setRedirect(final ClassNode type, final ClassNode classToCheck) {
String typeName = type.getName();
Predicate<ClassNode> resolver = (ClassNode maybeOuter) -> {
if (!typeName.equals(maybeOuter.getName())) {
ClassNode maybeNested = new ConstructedNestedClass(maybeOuter, typeName);
if (resolveFromCompileUnit(maybeNested) || resolveToOuter(maybeNested)) {
type.setRedirect(maybeNested);
return true;
}
}
return false;
};
if (resolver.test(classToCheck)) {
if (currentClass != classToCheck && !currentClass.getOuterClasses().contains(classToCheck) && !isVisibleNestedClass(type.redirect(), currentClass)) {
type.setRedirect(null);
} else {
return true;
}
}
for (ClassNode face : classToCheck.getAllInterfaces()) {
if (resolver.test(face)) {
return true;
}
}
return false;
}
private static String replaceLastPointWithDollar(final String name) {
int lastPointIndex = name.lastIndexOf('.');
return name.substring(0, lastPointIndex) + "$" + name.substring(lastPointIndex + 1);
}
protected boolean resolveFromStaticInnerClasses(final ClassNode type) {
// a class consisting of a vanilla name can never be
// a static inner class, because at least one dot is
// required for this. Example: foo.bar -> foo$bar
if (!(type instanceof LowerCaseClass || type instanceof ConstructedNestedClass)) {
if (type instanceof ConstructedClassWithPackage) {
// we replace '.' only in the className part
// with '$' to find an inner class. The case that
// the package is really a class is handled elsewhere
ConstructedClassWithPackage tmp = (ConstructedClassWithPackage) type;
String savedName = tmp.className;
tmp.className = replaceLastPointWithDollar(savedName);
if (resolve(tmp, false, true, true)) {
type.setRedirect(tmp.redirect());
return true;
}
tmp.className = savedName;
} else {
String savedName = type.getName();
String replacedPointType = replaceLastPointWithDollar(savedName);
type.setName(replacedPointType);
if (resolve(type, false, true, true)) return true;
type.setName(savedName);
}
}
return false;
}
protected boolean resolveFromDefaultImports(final ClassNode type) {
// we do not resolve a vanilla name starting with a lower case letter
// try to resolve against a default import, because we know that the
// default packages do not contain classes like these
if (!(type instanceof LowerCaseClass)) {
String typeName = type.getName();
Set<String> packagePrefixSet = DEFAULT_IMPORT_CLASS_AND_PACKAGES_CACHE.get(typeName);
if (packagePrefixSet != null) {
// if the type name was resolved before, we can try the successfully resolved packages first, which are much less and very likely successful to resolve.
// As a result, we can avoid trying other default import packages and further resolving, which can improve the resolving performance to some extent.
if (resolveFromDefaultImports(type, packagePrefixSet.toArray(EMPTY_STRING_ARRAY))) {
return true;
}
}
if (resolveFromDefaultImports(type, DEFAULT_IMPORTS)) {
return true;
}
if (BIGINTEGER_STR.equals(typeName)) {
type.setRedirect(ClassHelper.BigInteger_TYPE);
return true;
}
if (BIGDECIMAL_STR.equals(typeName)) {
type.setRedirect(ClassHelper.BigDecimal_TYPE);
return true;
}
}
return false;
}
private static final EvictableCache<String, Set<String>> DEFAULT_IMPORT_CLASS_AND_PACKAGES_CACHE = new UnlimitedConcurrentCache<>();
protected boolean resolveFromDefaultImports(final ClassNode type, final String[] packagePrefixes) {
String typeName = type.getName();
for (String packagePrefix : packagePrefixes) {
// We limit the inner class lookups here by using ConstructedClassWithPackage.
// This way only the name will change, the packagePrefix will
// not be included in the lookup. The case where the
// packagePrefix is really a class is handled elsewhere.
// WARNING: This code does not expect a class that has a static
// inner class in DEFAULT_IMPORTS
ConstructedClassWithPackage tmp = new ConstructedClassWithPackage(packagePrefix, typeName);
if (resolve(tmp, false, false, false)) {
type.setRedirect(tmp.redirect());
if (DEFAULT_IMPORTS == packagePrefixes) { // Only the non-cached type and packages should be cached
Set<String> packagePrefixSet = DEFAULT_IMPORT_CLASS_AND_PACKAGES_CACHE.getAndPut(typeName, key -> new HashSet<>(2));
packagePrefixSet.add(packagePrefix);
}
return true;
}
}
return false;
}
protected boolean resolveFromCompileUnit(final ClassNode type) {
// look into the compile unit if there is a class with that name
CompileUnit compileUnit = currentClass.getCompileUnit();
if (compileUnit == null) return false;
ClassNode cuClass = compileUnit.getClass(type.getName());
if (cuClass != null) {
if (type != cuClass) type.setRedirect(cuClass);
return true;
}
return false;
}
private void ambiguousClass(final ClassNode type, final ClassNode iType, final String name) {
if (type.getName().equals(iType.getName())) {
addError("reference to " + name + " is ambiguous, both class " + type.getName() + " and " + iType.getName() + " match", type);
} else {
type.setRedirect(iType);
}
}
private boolean resolveAliasFromModule(final ClassNode type) {
// In case of getting a ConstructedClassWithPackage here we do not do checks for partial
// matches with imported classes. The ConstructedClassWithPackage is already a constructed
// node and any subclass resolving will then take place elsewhere
if (type instanceof ConstructedClassWithPackage) return false;
ModuleNode module = currentClass.getModule();
if (module == null) return false;
String name = type.getName();
// check module node imports aliases
// the while loop enables a check for inner classes which are not fully imported,
// but visible as the surrounding class is imported and the inner class is public/protected static
String pname = name;
int index = name.length();
/*
* we have a name foo.bar and an import foo.foo. This means foo.bar is possibly
* foo.foo.bar rather than foo.bar. This means to cut at the dot in foo.bar and
* foo for import
*/
do {
pname = name.substring(0, index);
ClassNode aliasedNode = null;
ImportNode importNode = module.getImport(pname);
if (importNode != null && importNode != currImportNode) {
aliasedNode = importNode.getType();
}
if (aliasedNode == null) {
importNode = module.getStaticImports().get(pname);
if (importNode != null && importNode != currImportNode) {
// static alias only for inner classes and must be at end of chain
ClassNode tmp = new ConstructedNestedClass(importNode.getType(), importNode.getFieldName());
if (resolve(tmp, false, false, true)) {
if ((tmp.getModifiers() & Opcodes.ACC_STATIC) != 0) {
type.setRedirect(tmp.redirect());
return true;
}
}
}
}
if (aliasedNode != null) {
if (pname.length() == name.length()) {
// full match
// We can compare here by length, because pname is always
// a substring of name, so same length means they are equal.
type.setRedirect(aliasedNode);
return true;
} else {
//partial match
// At this point we know that we have a match for pname. This may
// mean, that name[pname.length()..<-1] is a static inner class.
// For this the rest of the name does not need any dots in its name.
// It is either completely a inner static class or it is not.
// Since we do not want to have useless lookups we create the name
// completely and use a ConstructedClassWithPackage to prevent lookups against the package.
String className = aliasedNode.getNameWithoutPackage() + "$" + name.substring(pname.length() + 1).replace('.', '$');
ConstructedClassWithPackage tmp = new ConstructedClassWithPackage(aliasedNode.getPackageName() + ".", className);
if (resolve(tmp, true, true, false)) {
type.setRedirect(tmp.redirect());
return true;
}
}
}
index = pname.lastIndexOf('.');
} while (index != -1);
return false;
}
protected boolean resolveFromModule(final ClassNode type, final boolean testModuleImports) {
if (type instanceof ConstructedNestedClass) return false;
// we decided if we have a vanilla name starting with a lower case
// letter that we will not try to resolve this name against .*
// imports. Instead a full import is needed for these.
// resolveAliasFromModule will do this check for us. This method
// does also check the module contains a class in the same package
// of this name. This check is not done for vanilla names starting
// with a lower case letter anymore
if (type instanceof LowerCaseClass) {
return resolveAliasFromModule(type);
}
String name = type.getName();
ModuleNode module = currentClass.getModule();
if (module == null) return false;
boolean newNameUsed = false;
// we add a package if there is none yet and the module has one. But we
// do not add that if the type is a ConstructedClassWithPackage. The code in ConstructedClassWithPackage
// hasPackageName() will return true if ConstructedClassWithPackage#className has no dots.
// but since the prefix may have them and the code there does ignore that
// fact. We check here for ConstructedClassWithPackage.
if (!type.hasPackageName() && module.hasPackageName() && !(type instanceof ConstructedClassWithPackage)) {
type.setName(module.getPackageName() + name);
newNameUsed = true;
}
// look into the module node if there is a class with that name
List<ClassNode> moduleClasses = module.getClasses();
for (ClassNode mClass : moduleClasses) {
if (mClass.getName().equals(type.getName())) {
if (mClass != type) type.setRedirect(mClass);
return true;
}
}
if (newNameUsed) type.setName(name);
if (testModuleImports) {
if (resolveAliasFromModule(type)) return true;
if (module.hasPackageName()) {
// check package this class is defined in. The usage of ConstructedClassWithPackage here
// means, that the module package will not be involved when the
// compiler tries to find an inner class.
ConstructedClassWithPackage tmp = new ConstructedClassWithPackage(module.getPackageName(), name);
if (resolve(tmp, false, false, false)) {
ambiguousClass(type, tmp, name);
type.setRedirect(tmp.redirect());
return true;
}
}
// check module static imports (for static inner classes)
for (ImportNode importNode : module.getStaticImports().values()) {
if (importNode.getFieldName().equals(name)) {
ClassNode tmp = new ConstructedNestedClass(importNode.getType(), name);
if (resolve(tmp, false, false, true)) {
if ((tmp.getModifiers() & Opcodes.ACC_STATIC) != 0) {
type.setRedirect(tmp.redirect());
return true;
}
}
}
}
// check module node import packages
for (ImportNode importNode : module.getStarImports()) {
String packagePrefix = importNode.getPackageName();
// We limit the inner class lookups here by using ConstructedClassWithPackage.
// This way only the name will change, the packagePrefix will
// not be included in the lookup. The case where the
// packagePrefix is really a class is handled elsewhere.
ConstructedClassWithPackage tmp = new ConstructedClassWithPackage(packagePrefix, name);
if (resolve(tmp, false, false, true)) {
ambiguousClass(type, tmp, name);
type.setRedirect(tmp.redirect());
return true;
}
}
// check for star imports (import static pkg.Outer.*) matching static inner classes
for (ImportNode importNode : module.getStaticStarImports().values()) {
ClassNode tmp = new ConstructedNestedClass(importNode.getType(), name);
if (resolve(tmp, false, false, true)) {
if ((tmp.getModifiers() & Opcodes.ACC_STATIC) != 0) {
ambiguousClass(type, tmp, name);
type.setRedirect(tmp.redirect());
return true;
}
}
}
}
return false;
}
protected boolean resolveToOuter(final ClassNode type) {
String name = type.getName();
// We do not need to check instances of LowerCaseClass
// to be a Class, because unless there was an import for
// for this we do not lookup these cases. This was a decision
// made on the mailing list. To ensure we will not visit this
// method again we set a NO_CLASS for this name
if (type instanceof LowerCaseClass) {
classNodeResolver.cacheClass(name, ClassNodeResolver.NO_CLASS);
return false;
}
if (currentClass.getModule().hasPackageName() && name.indexOf('.') == -1) return false;
LookupResult lr = classNodeResolver.resolveName(name, compilationUnit);
if (lr != null) {
if (lr.isSourceUnit()) {
SourceUnit su = lr.getSourceUnit();
currentClass.getCompileUnit().addClassNodeToCompile(type, su);
} else {
type.setRedirect(lr.getClassNode());
}
return true;
}
return false;
}
@Override
public Expression transform(final Expression exp) {
if (exp == null) return null;
Expression ret;
if (exp instanceof VariableExpression) {
ret = transformVariableExpression((VariableExpression) exp);
} else if (exp.getClass() == PropertyExpression.class) {
ret = transformPropertyExpression((PropertyExpression) exp);
} else if (exp instanceof DeclarationExpression) {
ret = transformDeclarationExpression((DeclarationExpression) exp);
} else if (exp instanceof BinaryExpression) {
ret = transformBinaryExpression((BinaryExpression) exp);
} else if (exp instanceof MethodCallExpression) {
ret = transformMethodCallExpression((MethodCallExpression) exp);
} else if (exp instanceof ClosureExpression) {
ret = transformClosureExpression((ClosureExpression) exp);
} else if (exp instanceof ConstructorCallExpression) {
ret = transformConstructorCallExpression((ConstructorCallExpression) exp);
} else if (exp instanceof AnnotationConstantExpression) {
ret = transformAnnotationConstantExpression((AnnotationConstantExpression) exp);
} else {
resolveOrFail(exp.getType(), exp);
ret = exp.transformExpression(this);
}
if (ret != null && ret != exp) {
ret.setSourcePosition(exp);
}
return ret;
}
private static String lookupClassName(final PropertyExpression pe) {
boolean doInitialClassTest = true;
StringBuilder name = new StringBuilder(32);
// this loop builds a name from right to left each name part
// separated by "."
for (Expression expr = pe; expr != null; expr = ((PropertyExpression) expr).getObjectExpression()) {
if (expr instanceof VariableExpression) {
VariableExpression ve = (VariableExpression) expr;
// stop at super and this
if (ve.isSuperExpression() || ve.isThisExpression()) {
return null;
}
String varName = ve.getName();
Tuple2<StringBuilder, Boolean> classNameInfo = makeClassName(doInitialClassTest, name, varName);
name = classNameInfo.getV1();
doInitialClassTest = classNameInfo.getV2();
break;
}
// anything other than PropertyExpressions or
// VariableExpressions will stop resolving
if (expr.getClass() != PropertyExpression.class) {
return null;
}
String property = ((PropertyExpression) expr).getPropertyAsString();
// the class property stops resolving, dynamic property names too
if (property == null || property.equals("class")) {
return null;
}
Tuple2<StringBuilder, Boolean> classNameInfo = makeClassName(doInitialClassTest, name, property);
name = classNameInfo.getV1();
doInitialClassTest = classNameInfo.getV2();
}
if (null == name || name.length() == 0) return null;
return name.toString();
}
private static Tuple2<StringBuilder, Boolean> makeClassName(final boolean doInitialClassTest, final StringBuilder name, final String varName) {
if (doInitialClassTest) {
// we are at the first name part. This is the right most part.
// If this part is in lower case, then we do not need a class
// check. other parts of the property expression will be tested
// by a different method call to this method, so foo.Bar.bar
// can still be resolved to the class foo.Bar and the static
// field bar.
if (!testVanillaNameForClass(varName)) {
return tuple(null, Boolean.TRUE);
} else {
return tuple(new StringBuilder(varName), Boolean.FALSE);
}
}
name.insert(0, varName + ".");
return tuple(name, Boolean.FALSE);
}
// iterate from the inner most to the outer and check for classes
// this check will ignore a .class property, for Example Integer.class will be
// a PropertyExpression with the ClassExpression of Integer as objectExpression
// and class as property
private static Expression correctClassClassChain(final PropertyExpression pe) {
LinkedList<Expression> stack = new LinkedList<Expression>();
ClassExpression found = null;
for (Expression it = pe; it != null; it = ((PropertyExpression) it).getObjectExpression()) {
if (it instanceof ClassExpression) {
found = (ClassExpression) it;
break;
} else if (!(it.getClass() == PropertyExpression.class)) {
return pe;
}
stack.addFirst(it);
}
if (found == null) return pe;
if (stack.isEmpty()) return pe;
Object stackElement = stack.removeFirst();
if (!(stackElement.getClass() == PropertyExpression.class)) return pe;
PropertyExpression classPropertyExpression = (PropertyExpression) stackElement;
String propertyNamePart = classPropertyExpression.getPropertyAsString();
if (propertyNamePart == null || !propertyNamePart.equals("class")) return pe;
found.setSourcePosition(classPropertyExpression);
if (stack.isEmpty()) return found;
stackElement = stack.removeFirst();
if (!(stackElement.getClass() == PropertyExpression.class)) return pe;
PropertyExpression classPropertyExpressionContainer = (PropertyExpression) stackElement;
classPropertyExpressionContainer.setObjectExpression(found);
return pe;
}
protected Expression transformPropertyExpression(PropertyExpression pe) {
boolean itlp = isTopLevelProperty;
boolean ipe = inPropertyExpression;
Expression objectExpression = pe.getObjectExpression();
inPropertyExpression = true;
isTopLevelProperty = (objectExpression.getClass() != PropertyExpression.class);
objectExpression = transform(objectExpression);
// we handle the property part as if it were not part of the property
inPropertyExpression = false;
Expression property = transform(pe.getProperty());
isTopLevelProperty = itlp;
inPropertyExpression = ipe;
boolean spreadSafe = pe.isSpreadSafe();
PropertyExpression old = pe;
pe = new PropertyExpression(objectExpression, property, pe.isSafe());
pe.setSpreadSafe(spreadSafe);
pe.setSourcePosition(old);
String className = lookupClassName(pe);
if (className != null) {
ClassNode type = ClassHelper.make(className);
if (resolve(type)) {
return new ClassExpression(type);
}
}
if (objectExpression instanceof ClassExpression && pe.getPropertyAsString() != null) {
// possibly an inner class (or inherited inner class)
ClassExpression ce = (ClassExpression) objectExpression;
ClassNode classNode = ce.getType();
while (classNode != null) {
ClassNode type = new ConstructedNestedClass(classNode, pe.getPropertyAsString());
if (resolve(type, false, false, false)) {
if (classNode == ce.getType() || isVisibleNestedClass(type, ce.getType())) {
return new ClassExpression(type);
}
}
classNode = classNode.getSuperClass();
}
}
Expression ret = pe;
checkThisAndSuperAsPropertyAccess(pe);
if (isTopLevelProperty) ret = correctClassClassChain(pe);
return ret;
}
private static boolean isVisibleNestedClass(final ClassNode innerType, final ClassNode outerType) {
int modifiers = innerType.getModifiers();
return Modifier.isPublic(modifiers) || Modifier.isProtected(modifiers)
|| (!Modifier.isPrivate(modifiers) && Objects.equals(innerType.getPackageName(), outerType.getPackageName()));
}
private boolean directlyImplementsTrait(final ClassNode trait) {
ClassNode[] interfaces = currentClass.getInterfaces();
if (interfaces == null) {
return currentClass.getSuperClass().equals(trait);
}
for (ClassNode node : interfaces) {
if (node.equals(trait)) {
return true;
}
}
return currentClass.getSuperClass().equals(trait);
}
private void checkThisAndSuperAsPropertyAccess(final PropertyExpression expression) {
if (expression.isImplicitThis()) return;
String prop = expression.getPropertyAsString();
if (prop == null) return;
if (!prop.equals("this") && !prop.equals("super")) return;
ClassNode type = expression.getObjectExpression().getType();
if (expression.getObjectExpression() instanceof ClassExpression) {
if (!(currentClass instanceof InnerClassNode) && !Traits.isTrait(type)) {
addError("The usage of 'Class.this' and 'Class.super' is only allowed in nested/inner classes.", expression);
return;
}
if (currentScope != null && !currentScope.isInStaticContext() && Traits.isTrait(type) && "super".equals(prop) && directlyImplementsTrait(type)) {
return;
}
ClassNode iterType = currentClass;
while (iterType != null) {
if (iterType.equals(type)) break;
iterType = iterType.getOuterClass();
}
if (iterType == null) {
addError("The class '" + type.getName() + "' needs to be an outer class of '" +
currentClass.getName() + "' when using '.this' or '.super'.", expression);
}
if ((currentClass.getModifiers() & Opcodes.ACC_STATIC) == 0) return;
if (currentScope != null && !currentScope.isInStaticContext()) return;
addError("The usage of 'Class.this' and 'Class.super' within static nested class '" +
currentClass.getName() + "' is not allowed in a static context.", expression);
}
}
protected Expression transformVariableExpression(final VariableExpression ve) {
visitAnnotations(ve);
Variable v = ve.getAccessedVariable();
if(!(v instanceof DynamicVariable) && !checkingVariableTypeInDeclaration) {
/*
* GROOVY-4009: when a normal variable is simply being used, there is no need to try to
* resolve its type. Variable type resolve should proceed only if the variable is being declared.
*/
return ve;
}
if (v instanceof DynamicVariable) {
String name = ve.getName();
ClassNode t = ClassHelper.make(name);
// asking isResolved here allows to check if a primitive
// type name like "int" was used to make t. In such a case
// we have nothing left to do.
boolean isClass = t.isResolved();
if (!isClass) {
// It was no primitive type, so next we see if the name,
// which is a vanilla name, starts with a lower case letter.
// In that case we change it to a LowerCaseClass to let the
// compiler skip the resolving at several places in this class.
if (Character.isLowerCase(name.charAt(0))) {
t = new LowerCaseClass(name);
}
isClass = resolve(t);
}
if (isClass) {
// the name is a type so remove it from the scoping
// as it is only a classvariable, it is only in
// referencedClassVariables, but must be removed
// for each parentscope too
for (VariableScope scope = currentScope; scope != null && !scope.isRoot(); scope = scope.getParent()) {
if (scope.removeReferencedClassVariable(ve.getName()) == null) break;
}
return new ClassExpression(t);
}
}
resolveOrFail(ve.getType(), ve);
ClassNode origin = ve.getOriginType();
if (origin != ve.getType()) resolveOrFail(origin, ve);
return ve;
}
private static boolean testVanillaNameForClass(final String name) {
if (name == null || name.length() == 0) return false;
return !Character.isLowerCase(name.charAt(0));
}
protected Expression transformBinaryExpression(final BinaryExpression be) {
Expression left = transform(be.getLeftExpression());
if (be.getOperation().isA(Types.ASSIGNMENT_OPERATOR) && left instanceof ClassExpression) {
ClassExpression ce = (ClassExpression) left;
String error = "you tried to assign a value to the class '" + ce.getType().getName() + "'";
if (ce.getType().isScript()) {
error += ". Do you have a script with this name?";
}
addError(error, be.getLeftExpression());
return be;
}
if (left instanceof ClassExpression && be.getOperation().isOneOf(
new int[]{Types.ARRAY_EXPRESSION, Types.SYNTH_LIST, Types.SYNTH_MAP})) {
if (be.getRightExpression() instanceof ListExpression) {
ListExpression list = (ListExpression) be.getRightExpression();
if (list.getExpressions().isEmpty()) {
return new ClassExpression(left.getType().makeArray());
} else {
// maybe we have C[k1:v1, k2:v2] -> should become (C)([k1:v1, k2:v2])
boolean map = true;
for (Expression expression : list.getExpressions()) {
if (!(expression instanceof MapEntryExpression)) {
map = false;
break;
}
}
if (map) {
MapExpression me = new MapExpression();
for (Expression expression : list.getExpressions()) {
me.addMapEntryExpression((MapEntryExpression) transform(expression));
}
me.setSourcePosition(list);
CastExpression ce = new CastExpression(left.getType(), me);
ce.setCoerce(true);
return ce;
}
}
} else if (be.getRightExpression() instanceof SpreadMapExpression) {
// we have C[*:map] -> should become (C) map
SpreadMapExpression mapExpression = (SpreadMapExpression) be.getRightExpression();
Expression right = transform(mapExpression.getExpression());
CastExpression ce = new CastExpression(left.getType(), right);
ce.setCoerce(true);
return ce;
}
if (be.getRightExpression() instanceof MapEntryExpression) {
// may be we have C[k1:v1] -> should become (C)([k1:v1])
MapExpression me = new MapExpression();
me.addMapEntryExpression((MapEntryExpression) transform(be.getRightExpression()));
me.setSourcePosition(be.getRightExpression());
return new CastExpression(left.getType(), me);
}
}
Expression right = transform(be.getRightExpression());
be.setLeftExpression(left);
be.setRightExpression(right);
return be;
}
protected Expression transformClosureExpression(final ClosureExpression ce) {
boolean oldInClosure = inClosure;
inClosure = true;
for (Parameter para : getParametersSafe(ce)) {
ClassNode t = para.getType();
resolveOrFail(t, ce);
visitAnnotations(para);
if (para.hasInitialExpression()) {
para.setInitialExpression(transform(para.getInitialExpression()));
}
visitAnnotations(para);
}
Statement code = ce.getCode();
if (code != null) code.visit(this);
inClosure = oldInClosure;
return ce;
}
protected Expression transformConstructorCallExpression(final ConstructorCallExpression cce) {
findPossibleOuterClassNodeForNonStaticInnerClassInstantiation(cce);
ClassNode type = cce.getType();
resolveOrFail(type, cce);
if (Modifier.isAbstract(type.getModifiers())) {
addError("You cannot create an instance from the abstract " + getDescription(type) + ".", cce);
}
return cce.transformExpression(this);
}
private void findPossibleOuterClassNodeForNonStaticInnerClassInstantiation(final ConstructorCallExpression cce) {
// GROOVY-8947: Fail to resolve non-static inner class outside of outer class
// `new Computer().new Cpu(4)` will be parsed to `new Cpu(new Computer(), 4)`
// so non-static inner class instantiation expression's first argument is a constructor call of outer class
// but the first argument is constructor call can not be non-static inner class instantiation expression, e.g.
// `new HashSet(new ArrayList())`, so we add "possible" to the variable name
Expression argumentExpression = cce.getArguments();
if (argumentExpression instanceof ArgumentListExpression) {
ArgumentListExpression argumentListExpression = (ArgumentListExpression) argumentExpression;
List<Expression> expressionList = argumentListExpression.getExpressions();
if (!expressionList.isEmpty()) {
Expression firstExpression = expressionList.get(0);
if (firstExpression instanceof ConstructorCallExpression) {
ConstructorCallExpression constructorCallExpression = (ConstructorCallExpression) firstExpression;
ClassNode possibleOuterClassNode = constructorCallExpression.getType();
possibleOuterClassNodeMap.put(cce.getType(), possibleOuterClassNode);
}
}
}
}
private static String getDescription(final ClassNode node) {
return (node.isInterface() ? "interface" : "class") + " '" + node.getName() + "'";
}
protected Expression transformMethodCallExpression(final MethodCallExpression mce) {
Expression args = transform(mce.getArguments());
Expression method = transform(mce.getMethod());
Expression object = transform(mce.getObjectExpression());
resolveGenericsTypes(mce.getGenericsTypes());
MethodCallExpression ret = new MethodCallExpression(object, method, args);
ret.setGenericsTypes(mce.getGenericsTypes());
ret.setMethodTarget(mce.getMethodTarget());
ret.setImplicitThis(mce.isImplicitThis());
ret.setSpreadSafe(mce.isSpreadSafe());
ret.setSafe(mce.isSafe());
return ret;
}
protected Expression transformDeclarationExpression(final DeclarationExpression de) {
visitAnnotations(de);
Expression oldLeft = de.getLeftExpression();
checkingVariableTypeInDeclaration = true;
Expression left = transform(oldLeft);
checkingVariableTypeInDeclaration = false;
if (left instanceof ClassExpression) {
ClassExpression ce = (ClassExpression) left;
addError("you tried to assign a value to the class " + ce.getType().getName(), oldLeft);
return de;
}
Expression right = transform(de.getRightExpression());
if (right == de.getRightExpression()) {
fixDeclaringClass(de);
return de;
}
DeclarationExpression newDeclExpr = new DeclarationExpression(left, de.getOperation(), right);
newDeclExpr.setDeclaringClass(de.getDeclaringClass());
newDeclExpr.addAnnotations(de.getAnnotations());
newDeclExpr.copyNodeMetaData(de);
fixDeclaringClass(newDeclExpr);
return newDeclExpr;
}
// TODO: get normal resolving to set declaring class
private void fixDeclaringClass(final DeclarationExpression newDeclExpr) {
if (newDeclExpr.getDeclaringClass() == null && currentMethod != null) {
newDeclExpr.setDeclaringClass(currentMethod.getDeclaringClass());
}
}
protected Expression transformAnnotationConstantExpression(final AnnotationConstantExpression ace) {
AnnotationNode an = (AnnotationNode) ace.getValue();
ClassNode type = an.getClassNode();
resolveOrFail(type, " for annotation", an);
for (Map.Entry<String, Expression> member : an.getMembers().entrySet()) {
member.setValue(transform(member.getValue()));
}
return ace;
}
@Override
public void visitAnnotations(final AnnotatedNode node) {
List<AnnotationNode> annotations = node.getAnnotations();
if (annotations.isEmpty()) return;
Map<String, AnnotationNode> tmpAnnotations = new HashMap<>();
for (AnnotationNode an : annotations) {
// skip built-in properties
if (an.isBuiltIn()) continue;
ClassNode annType = an.getClassNode();
resolveOrFail(annType, " for annotation", an);
for (Map.Entry<String, Expression> member : an.getMembers().entrySet()) {
Expression newValue = transform(member.getValue());
Expression adjusted = transformInlineConstants(newValue);
member.setValue(adjusted);
checkAnnotationMemberValue(adjusted);
}
if (annType.isResolved()) {
Class<?> annTypeClass = annType.getTypeClass();
Retention retAnn = annTypeClass.getAnnotation(Retention.class);
if (retAnn != null && !retAnn.value().equals(RetentionPolicy.SOURCE) && !isRepeatable(annTypeClass)) {
// remember non-source/non-repeatable annos (auto collecting of Repeatable annotations is handled elsewhere)
AnnotationNode anyPrevAnnNode = tmpAnnotations.put(annTypeClass.getName(), an);
if (anyPrevAnnNode != null) {
addError("Cannot specify duplicate annotation on the same member : " + annType.getName(), an);
}
}
}
}
}
private boolean isRepeatable(final Class<?> annTypeClass) {
Annotation[] annTypeAnnotations = annTypeClass.getAnnotations();
for (Annotation annTypeAnnotation : annTypeAnnotations) {
if (annTypeAnnotation.annotationType().getName().equals("java.lang.annotation.Repeatable")) {
return true;
}
}
return false;
}
// resolve constant-looking expressions statically (do here as they get transformed away later)
private static Expression transformInlineConstants(final Expression exp) {
if (exp instanceof AnnotationConstantExpression) {
ConstantExpression ce = (ConstantExpression) exp;
if (ce.getValue() instanceof AnnotationNode) {
// replicate a little bit of AnnotationVisitor here
// because we can't wait until later to do this
AnnotationNode an = (AnnotationNode) ce.getValue();
for (Map.Entry<String, Expression> member : an.getMembers().entrySet()) {
member.setValue(transformInlineConstants(member.getValue()));
}
}
} else {
return ExpressionUtils.transformInlineConstants(exp);
}
return exp;
}
private void checkAnnotationMemberValue(final Expression newValue) {
if (newValue instanceof PropertyExpression) {
PropertyExpression pe = (PropertyExpression) newValue;
if (!(pe.getObjectExpression() instanceof ClassExpression)) {
addError("unable to find class '" + pe.getText() + "' for annotation attribute constant", pe.getObjectExpression());
}
} else if (newValue instanceof ListExpression) {
ListExpression le = (ListExpression) newValue;
for (Expression e : le.getExpressions()) {
checkAnnotationMemberValue(e);
}
}
}
@Override
public void visitClass(final ClassNode node) {
ClassNode oldNode = currentClass;
currentClass = node;
if (node instanceof InnerClassNode) {
if (Modifier.isStatic(node.getModifiers())) {
genericParameterNames = new HashMap<>();
}
InnerClassNode innerClassNode = (InnerClassNode) node;
if (innerClassNode.isAnonymous()) {
MethodNode enclosingMethod = innerClassNode.getEnclosingMethod();
if (null != enclosingMethod) {
resolveGenericsHeader(enclosingMethod.getGenericsTypes());
}
}
} else {
genericParameterNames = new HashMap<>();
}
resolveGenericsHeader(node.getGenericsTypes());
ModuleNode module = node.getModule();
if (!module.hasImportsResolved()) {
for (ImportNode importNode : module.getImports()) {
currImportNode = importNode;
ClassNode type = importNode.getType();
if (resolve(type, false, false, true)) {
currImportNode = null;
continue;
}
currImportNode = null;
addError("unable to resolve class " + type.getName(), type);
}
for (ImportNode importNode : module.getStaticStarImports().values()) {
ClassNode type = importNode.getType();
if (resolve(type, false, false, true)) continue;
// Maybe this type belongs in the same package as the node that is doing the
// static import. In that case, the package may not have been explicitly specified.
// Try with the node's package too. If still not found, revert to original type name.
if (type.getPackageName() == null && node.getPackageName() != null) {
String oldTypeName = type.getName();
type.setName(node.getPackageName() + "." + oldTypeName);
if (resolve(type, false, false, true)) continue;
type.setName(oldTypeName);
}
addError("unable to resolve class " + type.getName(), type);
}
for (ImportNode importNode : module.getStaticImports().values()) {
ClassNode type = importNode.getType();
if (resolve(type, true, true, true)) continue;
addError("unable to resolve class " + type.getName(), type);
}
for (ImportNode importNode : module.getStaticStarImports().values()) {
ClassNode type = importNode.getType();
if (resolve(type, true, true, true)) continue;
addError("unable to resolve class " + type.getName(), type);
}
module.setImportsResolved(true);
}
ClassNode sn = node.getUnresolvedSuperClass();
if (sn != null) resolveOrFail(sn, node, true);
for (ClassNode anInterface : node.getInterfaces()) {
resolveOrFail(anInterface, node, true);
}
checkCyclicInheritance(node, node.getUnresolvedSuperClass(), node.getInterfaces());
super.visitClass(node);
resolveOuterNestedClassFurther(node);
currentClass = oldNode;
}
// GROOVY-7812(#2): Static inner classes cannot be accessed from other files when running by 'groovy' command
private void resolveOuterNestedClassFurther(final ClassNode node) {
CompileUnit compileUnit = currentClass.getCompileUnit();
if (null == compileUnit) return;
Map<String, ConstructedOuterNestedClassNode> classesToResolve = compileUnit.getClassesToResolve();
List<String> resolvedInnerClassNameList = new LinkedList<>();
for (Map.Entry<String, ConstructedOuterNestedClassNode> entry : classesToResolve.entrySet()) {
String innerClassName = entry.getKey();
ConstructedOuterNestedClassNode constructedOuterNestedClass = entry.getValue();
// When the outer class is resolved, all inner classes are resolved too
if (node.getName().equals(constructedOuterNestedClass.getEnclosingClassNode().getName())) {
ClassNode innerClassNode = compileUnit.getClass(innerClassName); // find the resolved inner class
if (null == innerClassNode) {
return; // "unable to resolve class" error can be thrown already, no need to `addError`, so just return
}
constructedOuterNestedClass.setRedirect(innerClassNode);
resolvedInnerClassNameList.add(innerClassName);
}
}
for (String innerClassName : resolvedInnerClassNameList) {
classesToResolve.remove(innerClassName);
}
}
private void checkCyclicInheritance(final ClassNode originalNode, final ClassNode parentToCompare, final ClassNode[] interfacesToCompare) {
if (!originalNode.isInterface()) {
if (parentToCompare == null) return;
if (originalNode == parentToCompare.redirect()) {
addError("Cyclic inheritance involving " + parentToCompare.getName() + " in class " + originalNode.getName(), originalNode);
return;
}
if (interfacesToCompare != null && interfacesToCompare.length > 0) {
for (ClassNode intfToCompare : interfacesToCompare) {
if (originalNode == intfToCompare.redirect()) {
addError("Cycle detected: the type " + originalNode.getName() + " cannot implement itself" , originalNode);
return;
}
}
}
if (parentToCompare == ClassHelper.OBJECT_TYPE) return;
checkCyclicInheritance(originalNode, parentToCompare.getUnresolvedSuperClass(), null);
} else {
if (interfacesToCompare != null && interfacesToCompare.length > 0) {
// check interfaces at this level first
for (ClassNode intfToCompare : interfacesToCompare) {
if(originalNode == intfToCompare.redirect()) {
addError("Cyclic inheritance involving " + intfToCompare.getName() + " in interface " + originalNode.getName(), originalNode);
return;
}
}
// check next level of interfaces
for (ClassNode intf : interfacesToCompare) {
checkCyclicInheritance(originalNode, null, intf.getInterfaces());
}
}
}
}
@Override
public void visitCatchStatement(final CatchStatement cs) {
resolveOrFail(cs.getExceptionType(), cs);
if (cs.getExceptionType() == ClassHelper.DYNAMIC_TYPE) {
cs.getVariable().setType(ClassHelper.make(Exception.class));
}
super.visitCatchStatement(cs);
}
@Override
public void visitForLoop(final ForStatement forLoop) {
resolveOrFail(forLoop.getVariableType(), forLoop);
super.visitForLoop(forLoop);
}
@Override
public void visitBlockStatement(final BlockStatement block) {
VariableScope oldScope = currentScope;
currentScope = block.getVariableScope();
super.visitBlockStatement(block);
currentScope = oldScope;
}
private boolean resolveGenericsTypes(final GenericsType[] types) {
if (types == null) return true;
currentClass.setUsingGenerics(true);
boolean resolved = true;
for (GenericsType type : types) {
// attempt resolution on all types, so don't short-circuit and stop if we've previously failed
resolved = resolveGenericsType(type) && resolved;
}
return resolved;
}
private void resolveGenericsHeader(final GenericsType[] types) {
resolveGenericsHeader(types, null, 0);
}
private void resolveGenericsHeader(final GenericsType[] types, final GenericsType rootType, final int level) {
if (types == null) return;
currentClass.setUsingGenerics(true);
List<Tuple2<ClassNode, GenericsType>> upperBoundsWithGenerics = new LinkedList<>();
List<Tuple2<ClassNode, ClassNode>> upperBoundsToResolve = new LinkedList<>();
for (GenericsType type : types) {
if (level > 0 && type.getName().equals(rootType.getName())) {
continue;
}
ClassNode classNode = type.getType();
String name = type.getName();
GenericsTypeName gtn = new GenericsTypeName(name);
ClassNode[] bounds = type.getUpperBounds();
boolean isWild = QUESTION_MARK.equals(name);
boolean toDealWithGenerics = 0 == level || (level > 0 && null != genericParameterNames.get(gtn));
if (bounds != null) {
boolean nameAdded = false;
for (ClassNode upperBound : bounds) {
if (!isWild) {
if (!nameAdded && upperBound != null || !resolve(classNode)) {
if (toDealWithGenerics) {
genericParameterNames.put(gtn, type);
type.setPlaceholder(true);
classNode.setRedirect(upperBound);
nameAdded = true;
}
}
upperBoundsToResolve.add(tuple(upperBound, classNode));
}
if (upperBound != null && upperBound.isUsingGenerics()) {
upperBoundsWithGenerics.add(tuple(upperBound, type));
}
}
} else {
if (!isWild) {
if (toDealWithGenerics) {
GenericsType originalGt = genericParameterNames.get(gtn);
genericParameterNames.put(gtn, type);
type.setPlaceholder(true);
if (null == originalGt) {
classNode.setRedirect(ClassHelper.OBJECT_TYPE);
} else {
classNode.setRedirect(originalGt.getType());
}
}
}
}
}
for (Tuple2<ClassNode, ClassNode> tp : upperBoundsToResolve) {
ClassNode upperBound = tp.getV1();
ClassNode classNode = tp.getV2();
resolveOrFail(upperBound, classNode);
}
for (Tuple2<ClassNode, GenericsType> tp : upperBoundsWithGenerics) {
ClassNode upperBound = tp.getV1();
GenericsType gt = tp.getV2();
resolveGenericsHeader(upperBound.getGenericsTypes(), 0 == level ? gt : rootType, level + 1);
}
}
private boolean resolveGenericsType(final GenericsType genericsType) {
if (genericsType.isResolved()) return true;
currentClass.setUsingGenerics(true);
ClassNode type = genericsType.getType();
// save name before redirect
GenericsTypeName name = new GenericsTypeName(type.getName());
ClassNode[] bounds = genericsType.getUpperBounds();
if (!genericParameterNames.containsKey(name)) {
if (bounds != null) {
for (ClassNode upperBound : bounds) {
resolveOrFail(upperBound, genericsType);
type.setRedirect(upperBound);
resolveGenericsTypes(upperBound.getGenericsTypes());
}
} else if (genericsType.isWildcard()) {
type.setRedirect(ClassHelper.OBJECT_TYPE);
} else {
resolveOrFail(type, genericsType);
}
} else {
GenericsType gt = genericParameterNames.get(name);
type.setRedirect(gt.getType());
genericsType.setPlaceholder(true);
}
if (genericsType.getLowerBound() != null) {
resolveOrFail(genericsType.getLowerBound(), genericsType);
}
if (resolveGenericsTypes(type.getGenericsTypes())) {
genericsType.setResolved(genericsType.getType().isResolved());
}
return genericsType.isResolved();
}
private static Map<String, ClassNode> findHierClasses(final ClassNode currentClass) {
Map<String, ClassNode> hierClasses = new LinkedHashMap<>();
for (ClassNode classToCheck = currentClass; classToCheck != ClassHelper.OBJECT_TYPE; classToCheck = classToCheck.getSuperClass()) {
if (classToCheck == null || hierClasses.containsKey(classToCheck.getName())) break;
hierClasses.put(classToCheck.getName(), classToCheck);
}
return hierClasses;
}
}