title: “Apache Gravitino Spark connector” slug: /spark-connector/spark-connector keyword: spark connector federation query license: “This software is licensed under the Apache License version 2.”

Overview

The Apache Gravitino Spark connector leverages the Spark DataSourceV2 interface to facilitate the management of diverse catalogs under Gravitino. This capability allows users to perform federation queries, accessing data from various catalogs through a unified interface and consistent access control.

Capabilities

  1. Supports Hive catalog, Iceberg catalog, Paimon catalog and Jdbc catalog.
  2. Supports federation query.
  3. Supports most DDL and DML SQLs.

Requirement

  • Spark 3.3 or 3.4 or 3.5
  • Scala 2.12 or 2.13
  • JDK 8, 11 or 17

How to use it

  1. Build or download the package (gravitino-spark-connector-runtime-3.3, gravitino-spark-connector-runtime-3.4, gravitino-spark-connector-runtime-3.5), and place it to the classpath of Spark.
  2. Configure the Spark session to use the Gravitino spark connector.
PropertyTypeDefault ValueDescriptionRequiredSince Version
spark.pluginsstring(none)Gravitino spark plugin name, org.apache.gravitino.spark.connector.plugin.GravitinoSparkPluginYes0.5.0
spark.sql.gravitino.metalakestring(none)The metalake name that spark connector used to request to Gravitino.Yes0.5.0
spark.sql.gravitino.uristring(none)The uri of Gravitino server address.Yes0.5.0
spark.sql.gravitino.enableIcebergSupportstringfalseSet to true to use Iceberg catalog.No0.5.1
spark.sql.gravitino.enablePaimonSupportstringfalseSet to true to use Paimon catalog.No1.0.0
spark.sql.gravitino.client.string(none)The configuration key prefix for the Gravitino client config.No1.0.0

To configure the Gravitino client, use properties prefixed with spark.sql.gravitino.client.. These properties will be passed to the Gravitino client after removing the spark.sql. prefix.

Example: Setting spark.sql.gravitino.client.socketTimeoutMs is equivalent to setting gravitino.client.socketTimeoutMs for the Gravitino client.

Note: Invalid configuration properties will result in exceptions. Please see Gravitino Java client configurations for more support client configuration.

./bin/spark-sql -v \
--conf spark.plugins="org.apache.gravitino.spark.connector.plugin.GravitinoSparkPlugin" \
--conf spark.sql.gravitino.uri=http://127.0.0.1:8090 \
--conf spark.sql.gravitino.metalake=test \
--conf spark.sql.gravitino.enableIcebergSupport=true \
--conf spark.sql.gravitino.client.socketTimeoutMs=60000 \
--conf spark.sql.gravitino.client.connectionTimeoutMs=60000 \
--conf spark.sql.warehouse.dir=hdfs://127.0.0.1:9000/user/hive/warehouse-hive
  1. Download corresponding runtime jars and place it to the classpath of Spark if using Iceberg catalog.

  2. Execute the Spark SQL query.

Suppose there are two catalogs in the metalake test, hive for Hive catalog and iceberg for Iceberg catalog.

// use hive catalog
USE hive;
CREATE DATABASE db;
USE db;
CREATE TABLE hive_students (id INT, name STRING);
INSERT INTO hive_students VALUES (1, 'Alice'), (2, 'Bob');

// use Iceberg catalog
USE iceberg;
USE db;
CREATE TABLE IF NOT EXISTS iceberg_scores (id INT, score INT) USING iceberg;
INSERT INTO iceberg_scores VALUES (1, 95), (2, 88);

// execute federation query between hive table and iceberg table
SELECT hs.name, is.score FROM hive.db.hive_students hs JOIN iceberg_scores is ON hs.id = is.id;

:::info The command SHOW CATALOGS will only display the Spark default catalog, named spark_catalog, due to limitations within the Spark catalog manager. It does not list the catalogs present in the metalake. However, after explicitly using the USE command with a specific catalog name, that catalog name then becomes visible in the output of SHOW CATALOGS. :::

Datatype mapping

Gravitino spark connector support the following datatype mapping between Spark and Gravitino.

Spark Data TypeGravitino Data TypeSince Version
BooleanTypeboolean0.5.0
ByteTypebyte0.5.0
ShortTypeshort0.5.0
IntegerTypeinteger0.5.0
LongTypelong0.5.0
FloatTypefloat0.5.0
DoubleTypedouble0.5.0
DecimalTypedecimal0.5.0
StringTypestring0.5.0
CharTypechar0.5.0
VarcharTypevarchar0.5.0
TimestampTypetimestamp with time zone0.5.0
TimestampNTZTypetimestamp without time zone0.5.0
DateTypedate0.5.0
BinaryTypebinary0.5.0
ArrayTypearray0.5.0
MapTypemap0.5.0
StructTypestruct0.5.0