blob: fd62dd62d21a1a963b29bf54bc04b8c3849806ed [file] [log] [blame] [view]
---
title: Overview
sidebar_position: 1
id: index
license: |
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
---
Fory Definition Language (FDL) is a schema definition language for Apache Fory that enables type-safe cross-language serialization. Define your data structures once and generate native data structure code for Java, Python, Go, Rust, and C++.
## Overview
FDL provides a simple, intuitive syntax for defining cross-language data structures:
```protobuf
package example;
enum Status {
PENDING = 0;
ACTIVE = 1;
COMPLETED = 2;
}
message User {
string name = 1;
int32 age = 2;
optional string email = 3;
repeated string tags = 4;
}
message Order {
ref User customer = 1;
repeated Item items = 2;
Status status = 3;
map<string, int32> metadata = 4;
}
message Dog [id=104] {
string name = 1;
int32 bark_volume = 2;
}
message Cat [id=105] {
string name = 1;
int32 lives = 2;
}
union Animal [id=106] {
Dog dog = 1;
Cat cat = 2;
}
```
## Why FDL?
### Schema-First Development
Define your data model once in FDL and generate consistent, type-safe code across all languages. This ensures:
- **Type Safety**: Catch type errors at compile time, not runtime
- **Consistency**: All languages use the same field names, types, and structures
- **Documentation**: Schema serves as living documentation
- **Evolution**: Managed schema changes across all implementations
### Fory-Native Features
Unlike generic IDLs, FDL is designed specifically for Fory serialization:
- **Reference Tracking**: First-class support for shared and circular references via `ref`
- **Nullable Fields**: Explicit `optional` modifier for nullable types
- **Type Registration**: Built-in support for both numeric IDs and namespace-based registration
- **Native Code Generation**: Generates idiomatic code with Fory annotations/macros
### Zero Runtime Overhead
Generated code uses native language constructs:
- Java: Plain POJOs with `@ForyField` annotations
- Python: Dataclasses with type hints
- Go: Structs with struct tags
- Rust: Structs with `#[derive(ForyObject)]`
- C++: Structs with `FORY_STRUCT` macros
## Quick Start
### 1. Install the Compiler
```bash
pip install fory-compiler
```
### 2. Write Your Schema
Create `example.fdl`:
```protobuf
package example;
message Person {
string name = 1;
int32 age = 2;
optional string email = 3;
}
```
### 3. Generate Code
```bash
# Generate for all languages
foryc example.fdl --output ./generated
# Generate for specific languages
foryc example.fdl --lang java,python --output ./generated
```
### 4. Use Generated Code
**Java:**
```java
Person person = new Person();
person.setName("Alice");
person.setAge(30);
byte[] data = person.toBytes();
```
**Python:**
```python
import pyfory
from example import Person
person = Person(name="Alice", age=30)
data = bytes(person) # or `person.to_bytes()`
```
## Documentation
| Document | Description |
| ----------------------------------------------- | ------------------------------------------------- |
| [FDL Syntax Reference](fdl-syntax.md) | Complete language syntax and grammar |
| [Type System](type-system.md) | Primitive types, collections, and type rules |
| [Compiler Guide](compiler-guide.md) | CLI options and build integration |
| [Generated Code](generated-code.md) | Output format for each target language |
| [Protocol Buffers IDL Support](protobuf-idl.md) | Comparison with protobuf and migration guide |
| [FlatBuffers IDL Support](flatbuffers-idl.md) | FlatBuffers mapping rules and codegen differences |
## Key Concepts
### Field Modifiers
- **`optional`**: Field can be null/None
- **`ref`**: Enable reference tracking for shared/circular references
- **`repeated`**: Field is a list/array
```protobuf
message Example {
optional string nullable = 1;
ref Node parent = 2;
repeated int32 numbers = 3;
}
```
### Cross-Language Compatibility
FDL types map to native types in each language:
| FDL Type | Java | Python | Go | Rust | C++ |
| -------- | --------- | ------ | -------- | -------- | ------------- |
| `int32` | `int` | `int` | `int32` | `i32` | `int32_t` |
| `string` | `String` | `str` | `string` | `String` | `std::string` |
| `bool` | `boolean` | `bool` | `bool` | `bool` | `bool` |
See [Type System](type-system.md) for complete mappings.
## Best Practices
1. **Use meaningful package names**: Group related types together
2. **Assign type IDs for performance**: Numeric IDs are faster than name-based registration
3. **Reserve ID ranges**: Leave gaps for future additions (e.g., 100-199 for users, 200-299 for orders)
4. **Use `optional` explicitly**: Make nullability clear in the schema
5. **Use `ref` for shared objects**: Enable reference tracking when objects are shared
## Examples
See the [examples](https://github.com/apache/fory/tree/main/compiler/examples) directory for complete working examples.