title: Row Format Guide sidebar_position: 5 id: row_format_guide license: | Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
public class Bar { String f1; List<Long> f2; } public class Foo { int f1; List<Integer> f2; Map<String, Integer> f3; List<Bar> f4; } RowEncoder<Foo> encoder = Encoders.bean(Foo.class); Foo foo = new Foo(); foo.f1 = 10; foo.f2 = IntStream.range(0, 1000000).boxed().collect(Collectors.toList()); foo.f3 = IntStream.range(0, 1000000).boxed().collect(Collectors.toMap(i -> "k"+i, i->i)); List<Bar> bars = new ArrayList<>(1000000); for (int i = 0; i < 1000000; i++) { Bar bar = new Bar(); bar.f1 = "s"+i; bar.f2 = LongStream.range(0, 10).boxed().collect(Collectors.toList()); bars.add(bar); } foo.f4 = bars; // Can be zero-copy read by python BinaryRow binaryRow = encoder.toRow(foo); // can be data from python Foo newFoo = encoder.fromRow(binaryRow); // zero-copy read List<Integer> f2 BinaryArray binaryArray2 = binaryRow.getArray(1); // zero-copy read List<Bar> f4 BinaryArray binaryArray4 = binaryRow.getArray(3); // zero-copy read 11th element of `readList<Bar> f4` BinaryRow barStruct = binaryArray4.getStruct(10); // zero-copy read 6th of f2 of 11th element of `readList<Bar> f4` barStruct.getArray(1).getInt64(5); RowEncoder<Bar> barEncoder = Encoders.bean(Bar.class); // deserialize part of data. Bar newBar = barEncoder.fromRow(barStruct); Bar newBar2 = barEncoder.fromRow(binaryArray4.getStruct(20));
@dataclass class Bar: f1: str f2: List[pa.int64] @dataclass class Foo: f1: pa.int32 f2: List[pa.int32] f3: Dict[str, pa.int32] f4: List[Bar] encoder = pyfory.encoder(Foo) foo = Foo(f1=10, f2=list(range(1000_000)), f3={f"k{i}": i for i in range(1000_000)}, f4=[Bar(f1=f"s{i}", f2=list(range(10))) for i in range(1000_000)]) binary: bytes = encoder.to_row(foo).to_bytes() print(f"start: {datetime.datetime.now()}") foo_row = pyfory.RowData(encoder.schema, binary) print(foo_row.f2[100000], foo_row.f4[100000].f1, foo_row.f4[200000].f2[5]) print(f"end: {datetime.datetime.now()}") binary = pickle.dumps(foo) print(f"pickle start: {datetime.datetime.now()}") new_foo = pickle.loads(binary) print(new_foo.f2[100000], new_foo.f4[100000].f1, new_foo.f4[200000].f2[5]) print(f"pickle end: {datetime.datetime.now()}")
Apache Fory™ Row Format also supports automatic conversion from/to Arrow Table/RecordBatch.
Java:
Schema schema = TypeInference.inferSchema(BeanA.class); ArrowWriter arrowWriter = ArrowUtils.createArrowWriter(schema); Encoder<BeanA> encoder = Encoders.rowEncoder(BeanA.class); for (int i = 0; i < 10; i++) { BeanA beanA = BeanA.createBeanA(2); arrowWriter.write(encoder.toRow(beanA)); } return arrowWriter.finishAsRecordBatch();
Fory now supports row format mapping for Java interface types and subclassed (extends) types, enabling more dynamic and flexible data schemas.
These enhancements were introduced in #2243, #2250, and #2256.
public interface Animal { String speak(); } public class Dog implements Animal { public String name; @Override public String speak() { return "Woof"; } } // Encode and decode using RowEncoder with interface type RowEncoder<Animal> encoder = Encoders.bean(Animal.class); Dog dog = new Dog(); dog.name = "Bingo"; BinaryRow row = encoder.toRow(dog); Animal decoded = encoder.fromRow(row); System.out.println(decoded.speak()); // Woof
public class Parent { public String parentField; } public class Child extends Parent { public String childField; } // Encode and decode using RowEncoder with parent class type RowEncoder<Parent> encoder = Encoders.bean(Parent.class); Child child = new Child(); child.parentField = "Hello"; child.childField = "World"; BinaryRow row = encoder.toRow(child); Parent decoded = encoder.fromRow(row);
Python:
import pyfory encoder = pyfory.encoder(Foo) encoder.to_arrow_record_batch([foo] * 10000) encoder.to_arrow_table([foo] * 10000)
C++
std::shared_ptr<ArrowWriter> arrow_writer; EXPECT_TRUE( ArrowWriter::Make(schema, ::arrow::default_memory_pool(), &arrow_writer) .ok()); for (auto &row : rows) { EXPECT_TRUE(arrow_writer->Write(row).ok()); } std::shared_ptr<::arrow::RecordBatch> record_batch; EXPECT_TRUE(arrow_writer->Finish(&record_batch).ok()); EXPECT_TRUE(record_batch->Validate().ok()); EXPECT_EQ(record_batch->num_columns(), schema->num_fields()); EXPECT_EQ(record_batch->num_rows(), row_nums);
Schema schema = TypeInference.inferSchema(BeanA.class); ArrowWriter arrowWriter = ArrowUtils.createArrowWriter(schema); Encoder<BeanA> encoder = Encoders.rowEncoder(BeanA.class); for (int i = 0; i < 10; i++) { BeanA beanA = BeanA.createBeanA(2); arrowWriter.write(encoder.toRow(beanA)); } return arrowWriter.finishAsRecordBatch();