title: Row Format sidebar_position: 11 id: python_row_format license: | Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Apache Fory™ provides a random-access row format that enables reading nested fields from binary data without full deserialization.
Row format drastically reduces overhead when working with large objects where only partial data access is needed. It also supports memory-mapped files for ultra-low memory footprint.
Key Benefits:
| Feature | Description |
|---|---|
| Zero-Copy Access | Read nested fields without deserializing entire object |
| Memory Efficiency | Memory-map large datasets directly from disk |
| Cross-Language | Binary format compatible between Python, Java, C++ |
| Partial Deserialization | Deserialize only specific elements you need |
| High Performance | Skip unnecessary data parsing for analytics workloads |
import pyfory import pyarrow as pa from dataclasses import dataclass from typing import List, Dict @dataclass class Bar: f1: str f2: List[pa.int64] @dataclass class Foo: f1: pa.int32 f2: List[pa.int32] f3: Dict[str, pa.int32] f4: List[Bar] # Create encoder for row format encoder = pyfory.encoder(Foo) # Create large dataset foo = Foo( f1=10, f2=list(range(1_000_000)), f3={f"k{i}": i for i in range(1_000_000)}, f4=[Bar(f1=f"s{i}", f2=list(range(10))) for i in range(1_000_000)] ) # Encode to row format binary: bytes = encoder.to_row(foo).to_bytes() # Zero-copy access - no full deserialization needed! foo_row = pyfory.RowData(encoder.schema, binary) print(foo_row.f2[100000]) # Access 100,000th element directly print(foo_row.f4[100000].f1) # Access nested field directly print(foo_row.f4[200000].f2[5]) # Access deeply nested field directly
Row format works seamlessly across languages. The same binary data can be accessed from Java and C++.
public class Bar { String f1; List<Long> f2; } public class Foo { int f1; List<Integer> f2; Map<String, Integer> f3; List<Bar> f4; } RowEncoder<Foo> encoder = Encoders.bean(Foo.class); // Encode to row format (cross-language compatible with Python) BinaryRow binaryRow = encoder.toRow(foo); // Zero-copy random access without full deserialization BinaryArray f2Array = binaryRow.getArray(1); // Access f2 list BinaryArray f4Array = binaryRow.getArray(3); // Access f4 list BinaryRow bar10 = f4Array.getStruct(10); // Access 11th Bar long value = bar10.getArray(1).getInt64(5); // Access 6th element of bar.f2 // Partial deserialization - only deserialize what you need RowEncoder<Bar> barEncoder = Encoders.bean(Bar.class); Bar bar1 = barEncoder.fromRow(f4Array.getStruct(10)); // Deserialize 11th Bar only Bar bar2 = barEncoder.fromRow(f4Array.getStruct(20)); // Deserialize 21st Bar only
#include "fory/encoder/row_encoder.h" #include "fory/row/writer.h" struct Bar { std::string f1; std::vector<int64_t> f2; }; FORY_FIELD_INFO(Bar, f1, f2); struct Foo { int32_t f1; std::vector<int32_t> f2; std::map<std::string, int32_t> f3; std::vector<Bar> f4; }; FORY_FIELD_INFO(Foo, f1, f2, f3, f4); fory::encoder::RowEncoder<Foo> encoder; encoder.Encode(foo); auto row = encoder.GetWriter().ToRow(); // Zero-copy random access without full deserialization auto f2_array = row->GetArray(1); // Access f2 list auto f4_array = row->GetArray(3); // Access f4 list auto bar10 = f4_array->GetStruct(10); // Access 11th Bar int64_t value = bar10->GetArray(1)->GetInt64(5); // Access 6th element of bar.f2 std::string str = bar10->GetString(0); // Access bar.f1
Row format requires Apache Arrow:
pip install pyfory[format]