Different metrics of distance are convenient for different types of analysis. Flink ML provides built-in implementations for many standard distance metrics. You can create custom distance metrics by implementing the DistanceMetric
trait.
Currently, FlinkML supports the following metrics:
<tbody> <tr> <td><strong>Euclidean Distance</strong></td> <td> $$d(\x, \y) = \sqrt{\sum_{i=1}^n \left(x_i - y_i \right)^2}$$ </td> </tr> <tr> <td><strong>Squared Euclidean Distance</strong></td> <td> $$d(\x, \y) = \sum_{i=1}^n \left(x_i - y_i \right)^2$$ </td> </tr> <tr> <td><strong>Cosine Similarity</strong></td> <td> $$d(\x, \y) = 1 - \frac{\x^T \y}{\Vert \x \Vert \Vert \y \Vert}$$ </td> </tr> <tr> <td><strong>Chebyshev Distance</strong></td> <td> $$d(\x, \y) = \max_{i}\left(\left \vert x_i - y_i \right\vert \right)$$ </td> </tr> <tr> <td><strong>Manhattan Distance</strong></td> <td> $$d(\x, \y) = \sum_{i=1}^n \left\vert x_i - y_i \right\vert$$ </td> </tr> <tr> <td><strong>Minkowski Distance</strong></td> <td> $$d(\x, \y) = \left( \sum_{i=1}^{n} \left( x_i - y_i \right)^p \right)^{\rfrac{1}{p}}$$ </td> </tr> <tr> <td><strong>Tanimoto Distance</strong></td> <td> $$d(\x, \y) = 1 - \frac{\x^T\y}{\Vert \x \Vert^2 + \Vert \y \Vert^2 - \x^T\y}$$ with $\x$ and $\y$ being bit-vectors </td> </tr> </tbody>
You can create your own distance metric by implementing the DistanceMetric
trait.
{% highlight scala %} class MyDistance extends DistanceMetric { override def distance(a: Vector, b: Vector) = ... // your implementation for distance metric }
object MyDistance { def apply() = new MyDistance() }
val myMetric = MyDistance() {% endhighlight %}