layout: post title: ‘Introducing Flink Streaming’ date: 2015-02-09 12:00:00 categories: news

This post is the first of a series of blog posts on Flink Streaming, the recent addition to Apache Flink that makes it possible to analyze continuous data sources in addition to static files. Flink Streaming uses the pipelined Flink engine to process data streams in real time and offers a new API including definition of flexible windows.

In this post, we go through an example that uses the Flink Streaming API to compute statistics on stock market data that arrive continuously and combine the stock market data with Twitter streams. See the Streaming Programming Guide for a detailed presentation of the Streaming API.

First, we read a bunch of stock price streams and combine them into one stream of market data. We apply several transformations on this market data stream, like rolling aggregations per stock. Then we emit price warning alerts when the prices are rapidly changing. Moving towards more advanced features, we compute rolling correlations between the market data streams and a Twitter stream with stock mentions.

For running the example implementation please use the 0.9-SNAPSHOT version of Flink as a dependency. The full example code base can be found here in Scala and here in Java7.

Back to top

Reading from multiple inputs

First, let us create the stream of stock prices:

  1. Read a socket stream of stock prices
  2. Parse the text in the stream to create a stream of StockPrice objects
  3. Add four other sources tagged with the stock symbol.
  4. Finally, merge the streams to create a unified stream.

val env = StreamExecutionEnvironment.getExecutionEnvironment

//Read from a socket stream at map it to StockPrice objects val socketStockStream = env.socketTextStream(“localhost”, 9999).map(x => { val split = x.split(“,”) StockPrice(split(0), split(1).toDouble) })

//Generate other stock streams val SPX_Stream = env.addSource(generateStock(“SPX”)(10) _) val FTSE_Stream = env.addSource(generateStock(“FTSE”)(20) _) val DJI_Stream = env.addSource(generateStock(“DJI”)(30) _) val BUX_Stream = env.addSource(generateStock(“BUX”)(40) _)

//Merge all stock streams together val stockStream = socketStockStream.merge(SPX_Stream, FTSE_Stream, DJI_Stream, BUX_Stream)

stockStream.print()

env.execute(“Stock stream”) } {% endhighlight %}

final StreamExecutionEnvironment env =
    StreamExecutionEnvironment.getExecutionEnvironment();

//Read from a socket stream at map it to StockPrice objects
DataStream<StockPrice> socketStockStream = env
        .socketTextStream("localhost", 9999)
        .map(new MapFunction<String, StockPrice>() {
            private String[] tokens;

            @Override
            public StockPrice map(String value) throws Exception {
                tokens = value.split(",");
                return new StockPrice(tokens[0],
                    Double.parseDouble(tokens[1]));
            }
        });

//Generate other stock streams
DataStream<StockPrice> SPX_stream = env.addSource(new StockSource("SPX", 10));
DataStream<StockPrice> FTSE_stream = env.addSource(new StockSource("FTSE", 20));
DataStream<StockPrice> DJI_stream = env.addSource(new StockSource("DJI", 30));
DataStream<StockPrice> BUX_stream = env.addSource(new StockSource("BUX", 40));

//Merge all stock streams together
DataStream<StockPrice> stockStream = socketStockStream
    .merge(SPX_stream, FTSE_stream, DJI_stream, BUX_stream);

stockStream.print();

env.execute("Stock stream");
{% endhighlight %} 

See here on how you can create streaming sources for Flink Streaming programs. Flink, of course, has support for reading in streams from external sources such as Apache Kafka, Apache Flume, RabbitMQ, and others. For the sake of this example, the data streams are simply generated using the generateStock method:

case class StockPrice(symbol: String, price: Double)

def generateStock(symbol: String)(sigma: Int)(out: Collector[StockPrice]) = { var price = 1000. while (true) { price = price + Random.nextGaussian * sigma out.collect(StockPrice(symbol, price)) Thread.sleep(Random.nextInt(200)) } } {% endhighlight %}

public static class StockPrice implements Serializable {

public String symbol;
public Double price;

public StockPrice() {
}

public StockPrice(String symbol, Double price) {
    this.symbol = symbol;
    this.price = price;
}

@Override
public String toString() {
    return "StockPrice{" +
            "symbol='" + symbol + '\'' +
            ", count=" + price +
            '}';
}

}

public final static class StockSource implements SourceFunction {

private Double price;
private String symbol;
private Integer sigma;

public StockSource(String symbol, Integer sigma) {
    this.symbol = symbol;
    this.sigma = sigma;
}

@Override
public void invoke(Collector<StockPrice> collector) throws Exception {
    price = DEFAULT_PRICE;
    Random random = new Random();

    while (true) {
        price = price + random.nextGaussian() * sigma;
        collector.collect(new StockPrice(symbol, price));
        Thread.sleep(random.nextInt(200));
    }
}

} {% endhighlight %}

To read from the text socket stream please make sure that you have a socket running. For the sake of the example executing the following command in a terminal does the job. You can get netcat here if it is not available on your machine.

nc -lk 9999

If we execute the program from our IDE we see the system the stock prices being generated:

INFO    Job execution switched to status RUNNING.
INFO    Socket Stream(1/1) switched to SCHEDULED 
INFO    Socket Stream(1/1) switched to DEPLOYING
INFO    Custom Source(1/1) switched to SCHEDULED 
INFO    Custom Source(1/1) switched to DEPLOYING
…
1> StockPrice{symbol='SPX', count=1011.3405732645239}
2> StockPrice{symbol='SPX', count=1018.3381290039248}
1> StockPrice{symbol='DJI', count=1036.7454894073978}
3> StockPrice{symbol='DJI', count=1135.1170217478427}
3> StockPrice{symbol='BUX', count=1053.667523187687}
4> StockPrice{symbol='BUX', count=1036.552601487263}

Back to top

Window aggregations

We first compute aggregations on time-based windows of the data. Flink provides flexible windowing semantics where windows can also be defined based on count of records or any custom user defined logic.

We partition our stream into windows of 10 seconds and slide the window every 5 seconds. We compute three statistics every 5 seconds. The first is the minimum price of all stocks, the second produces maximum price per stock, and the third is the mean stock price (using a map window function). Aggregations and groupings can be performed on named fields of POJOs, making the code more readable.

{% highlight scala %} //Define the desired time window val windowedStream = stockStream .window(Time.of(10, SECONDS)).every(Time.of(5, SECONDS))

//Compute some simple statistics on a rolling window val lowest = windowedStream.minBy(“price”) val maxByStock = windowedStream.groupBy(“symbol”).maxBy(“price”) val rollingMean = windowedStream.groupBy(“symbol”).mapWindow(mean _)

//Compute the mean of a window def mean(ts: Iterable[StockPrice], out: Collector[StockPrice]) = { if (ts.nonEmpty) { out.collect(StockPrice(ts.head.symbol, ts.foldLeft(0: Double)(_ + _.price) / ts.size)) } } {% endhighlight %}

{% highlight java %} //Define the desired time window WindowedDataStream windowedStream = stockStream .window(Time.of(10, TimeUnit.SECONDS)) .every(Time.of(5, TimeUnit.SECONDS));

//Compute some simple statistics on a rolling window DataStream lowest = windowedStream.minBy(“price”).flatten(); DataStream maxByStock = windowedStream.groupBy(“symbol”) .maxBy(“price”).flatten(); DataStream rollingMean = windowedStream.groupBy(“symbol”) .mapWindow(new WindowMean()).flatten();

//Compute the mean of a window public final static class WindowMean implements WindowMapFunction<StockPrice, StockPrice> {

private Double sum = 0.0;
private Integer count = 0;
private String symbol = "";

@Override
public void mapWindow(Iterable<StockPrice> values, Collector<StockPrice> out) 
    throws Exception {

    if (values.iterator().hasNext()) {s
        for (StockPrice sp : values) {
            sum += sp.price;
            symbol = sp.symbol;
            count++;
        }
        out.collect(new StockPrice(symbol, sum / count));
    }
}

} {% endhighlight %}

Let us note that to print a windowed stream one has to flatten it first, thus getting rid of the windowing logic. For example execute maxByStock.flatten().print() to print the stream of maximum prices of the time windows by stock. For Scala flatten() is called implicitly when needed.

Back to top

Data-driven windows

The most interesting event in the stream is when the price of a stock is changing rapidly. We can send a warning when a stock price changes more than 5% since the last warning. To do that, we use a delta-based window providing a threshold on when the computation will be triggered, a function to compute the difference and a default value with which the first record is compared. We also create a Count data type to count the warnings every 30 seconds.

{% highlight scala %} case class Count(symbol: String, count: Int) val defaultPrice = StockPrice("", 1000)

//Use delta policy to create price change warnings val priceWarnings = stockStream.groupBy(“symbol”) .window(Delta.of(0.05, priceChange, defaultPrice)) .mapWindow(sendWarning _)

//Count the number of warnings every half a minute val warningsPerStock = priceWarnings.map(Count(_, 1)) .groupBy(“symbol”) .window(Time.of(30, SECONDS)) .sum(“count”)

def priceChange(p1: StockPrice, p2: StockPrice): Double = { Math.abs(p1.price / p2.price - 1) }

def sendWarning(ts: Iterable[StockPrice], out: Collector[String]) = { if (ts.nonEmpty) out.collect(ts.head.symbol) }

{% endhighlight %}

{% highlight java %}

private static final Double DEFAULT_PRICE = 1000.; private static final StockPrice DEFAULT_STOCK_PRICE = new StockPrice("", DEFAULT_PRICE);

//Use delta policy to create price change warnings DataStream priceWarnings = stockStream.groupBy(“symbol”) .window(Delta.of(0.05, new DeltaFunction() { @Override public double getDelta(StockPrice oldDataPoint, StockPrice newDataPoint) { return Math.abs(oldDataPoint.price - newDataPoint.price); } }, DEFAULT_STOCK_PRICE)) .mapWindow(new SendWarning()).flatten();

//Count the number of warnings every half a minute DataStream warningsPerStock = priceWarnings.map(new MapFunction<String, Count>() { @Override public Count map(String value) throws Exception { return new Count(value, 1); } }).groupBy(“symbol”).window(Time.of(30, TimeUnit.SECONDS)).sum(“count”).flatten();

public static class Count implements Serializable { public String symbol; public Integer count;

public Count() {
}

public Count(String symbol, Integer count) {
    this.symbol = symbol;
    this.count = count;
}

@Override
public String toString() {
    return "Count{" +
            "symbol='" + symbol + '\'' +
            ", count=" + count +
            '}';
}

}

public static final class SendWarning implements MapWindowFunction<StockPrice, String> { @Override public void mapWindow(Iterable values, Collector out) throws Exception {

    if (values.iterator().hasNext()) {
        out.collect(values.iterator().next().symbol);
    }
}

}

{% endhighlight %}

Back to top

Combining with a Twitter stream

Next, we will read a Twitter stream and correlate it with our stock price stream. Flink has support for connecting to Twitter's API but for the sake of this example we generate dummy tweet data.

{% highlight scala %} //Read a stream of tweets val tweetStream = env.addSource(generateTweets _)

//Extract the stock symbols val mentionedSymbols = tweetStream.flatMap(tweet => tweet.split(" ")) .map(.toUpperCase()) .filter(symbols.contains())

//Count the extracted symbols val tweetsPerStock = mentionedSymbols.map(Count(_, 1)) .groupBy(“symbol”) .window(Time.of(30, SECONDS)) .sum(“count”)

def generateTweets(out: Collector[String]) = { while (true) { val s = for (i <- 1 to 3) yield (symbols(Random.nextInt(symbols.size))) out.collect(s.mkString(" ")) Thread.sleep(Random.nextInt(500)) } } {% endhighlight %}

{% highlight java %} //Read a stream of tweets DataStream tweetStream = env.addSource(new TweetSource());

//Extract the stock symbols DataStream mentionedSymbols = tweetStream.flatMap( new FlatMapFunction<String, String>() { @Override public void flatMap(String value, Collector out) throws Exception { String[] words = value.split(" "); for (String word : words) { out.collect(word.toUpperCase()); } } }).filter(new FilterFunction() { @Override public boolean filter(String value) throws Exception { return SYMBOLS.contains(value); } });

//Count the extracted symbols DataStream tweetsPerStock = mentionedSymbols.map(new MapFunction<String, Count>() { @Override public Count map(String value) throws Exception { return new Count(value, 1); } }).groupBy(“symbol”).window(Time.of(30, TimeUnit.SECONDS)).sum(“count”).flatten();

public static final class TweetSource implements SourceFunction { Random random; StringBuilder stringBuilder;

@Override
public void invoke(Collector<String> collector) throws Exception {
    random = new Random();
    stringBuilder = new StringBuilder();

    while (true) {
        stringBuilder.setLength(0);
        for (int i = 0; i < 3; i++) {
            stringBuilder.append(" ");
            stringBuilder.append(SYMBOLS.get(random.nextInt(SYMBOLS.size())));
        }
        collector.collect(stringBuilder.toString());
        Thread.sleep(500);
    }

}

}

{% endhighlight %}

Back to top

Streaming joins

Finally, we join real-time tweets and stock prices and compute a rolling correlation between the number of price warnings and the number of mentions of a given stock in the Twitter stream. As both of these data streams are potentially infinite, we apply the join on a 30-second window.

{% highlight scala %}

//Join warnings and parsed tweets val tweetsAndWarning = warningsPerStock.join(tweetsPerStock) .onWindow(30, SECONDS) .where(“symbol”) .equalTo(“symbol”) { (c1, c2) => (c1.count, c2.count) }

val rollingCorrelation = tweetsAndWarning.window(Time.of(30, SECONDS)) .mapWindow(computeCorrelation _)

rollingCorrelation print

//Compute rolling correlation def computeCorrelation(input: Iterable[(Int, Int)], out: Collector[Double]) = { if (input.nonEmpty) { val var1 = input.map(_.1) val mean1 = average(var1) val var2 = input.map(._2) val mean2 = average(var2)

val cov = average(var1.zip(var2).map(xy => (xy._1 - mean1) * (xy._2 - mean2)))
val d1 = Math.sqrt(average(var1.map(x => Math.pow((x - mean1), 2))))
val d2 = Math.sqrt(average(var2.map(x => Math.pow((x - mean2), 2))))

out.collect(cov / (d1 * d2))

} }

{% endhighlight %}

{% highlight java %}

//Join warnings and parsed tweets DataStream<Tuple2<Integer, Integer>> tweetsAndWarning = warningsPerStock .join(tweetsPerStock) .onWindow(30, TimeUnit.SECONDS) .where(“symbol”) .equalTo(“symbol”) .with(new JoinFunction<Count, Count, Tuple2<Integer, Integer>>() { @Override public Tuple2<Integer, Integer> join(Count first, Count second) throws Exception { return new Tuple2<Integer, Integer>(first.count, second.count); } });

//Compute rolling correlation DataStream rollingCorrelation = tweetsAndWarning .window(Time.of(30, TimeUnit.SECONDS)) .mapWindow(new WindowCorrelation());

rollingCorrelation.print();

public static final class WindowCorrelation implements WindowMapFunction<Tuple2<Integer, Integer>, Double> {

private Integer leftSum;
private Integer rightSum;
private Integer count;

private Double leftMean;
private Double rightMean;

private Double cov;
private Double leftSd;
private Double rightSd;

@Override
public void mapWindow(Iterable<Tuple2<Integer, Integer>> values, Collector<Double> out) 
    throws Exception {

    leftSum = 0;
    rightSum = 0;
    count = 0;

    cov = 0.;
    leftSd = 0.;
    rightSd = 0.;

    //compute mean for both sides, save count
    for (Tuple2<Integer, Integer> pair : values) {
        leftSum += pair.f0;
        rightSum += pair.f1;
        count++;
    }

    leftMean = leftSum.doubleValue() / count;
    rightMean = rightSum.doubleValue() / count;

    //compute covariance & std. deviations
    for (Tuple2<Integer, Integer> pair : values) {
        cov += (pair.f0 - leftMean) * (pair.f1 - rightMean) / count;
    }

    for (Tuple2<Integer, Integer> pair : values) {
        leftSd += Math.pow(pair.f0 - leftMean, 2) / count;
        rightSd += Math.pow(pair.f1 - rightMean, 2) / count;
    }
    leftSd = Math.sqrt(leftSd);
    rightSd = Math.sqrt(rightSd);

    out.collect(cov / (leftSd * rightSd));
}

}

{% endhighlight %}

Back to top

Other things to try

For a full feature overview please check the Streaming Guide, which describes all the available API features. You are very welcome to try out our features for different use-cases we are looking forward to your experiences. Feel free to contact us.

Upcoming for streaming

There are some aspects of Flink Streaming that are subjects to change by the next release making this application look even nicer.

Stay tuned for later blog posts on how Flink Streaming works internally, fault tolerance, and performance measurements!

Back to top