| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| import os |
| |
| from pyflink.common import Types |
| |
| from pyflink.ml.linalg import Vectors |
| from pyflink.ml.feature.hashingtf import HashingTF |
| from pyflink.ml.tests.test_utils import PyFlinkMLTestCase |
| |
| |
| class HashingTFTest(PyFlinkMLTestCase): |
| def setUp(self): |
| super(HashingTFTest, self).setUp() |
| self.input_data_table = self.t_env.from_data_stream( |
| self.env.from_collection([ |
| (['HashingTFTest', 'Hashing', 'Term', 'Frequency', 'Test'],), |
| (['HashingTFTest', 'Hashing', 'Hashing', 'Test', 'Test'],), |
| ], |
| type_info=Types.ROW_NAMED( |
| ["input", ], |
| [Types.OBJECT_ARRAY(Types.STRING())]))) |
| |
| self.expected_output = [ |
| Vectors.sparse(262144, [67564, 89917, 113827, 131486, 228971], |
| [1.0, 1.0, 1.0, 1.0, 1.0]), |
| Vectors.sparse(262144, [67564, 131486, 228971], [1.0, 2.0, 2.0]) |
| ] |
| |
| self.expected_binary_output = [ |
| Vectors.sparse(262144, [67564, 89917, 113827, 131486, 228971], |
| [1.0, 1.0, 1.0, 1.0, 1.0]), |
| Vectors.sparse(262144, [67564, 131486, 228971], [1.0, 1.0, 1.0]) |
| ] |
| |
| def test_param(self): |
| hashing_tf = HashingTF() |
| self.assertEqual('input', hashing_tf.input_col) |
| self.assertFalse(hashing_tf.binary) |
| self.assertEqual(262144, hashing_tf.num_features) |
| self.assertEqual('output', hashing_tf.output_col) |
| |
| hashing_tf.set_input_col("test_input_col") \ |
| .set_binary(True) \ |
| .set_num_features(1024) \ |
| .set_output_col("test_output_col") |
| |
| self.assertEqual('test_input_col', hashing_tf.input_col) |
| self.assertTrue(hashing_tf.binary) |
| self.assertEqual(1024, hashing_tf.num_features) |
| self.assertEqual('test_output_col', hashing_tf.output_col) |
| |
| def test_output_schema(self): |
| hashing_tf = HashingTF() |
| input_data_table = self.t_env.from_data_stream( |
| self.env.from_collection([ |
| ([''], ''), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['input', 'dummy_input'], |
| [Types.OBJECT_ARRAY(Types.STRING()), Types.STRING()]))) |
| |
| output = hashing_tf \ |
| .set_input_col('input') \ |
| .set_output_col('output') \ |
| .transform(input_data_table)[0] |
| |
| self.assertEqual( |
| [hashing_tf.input_col, 'dummy_input', hashing_tf.output_col], |
| output.get_schema().get_field_names()) |
| |
| def verify_output_result(self, output_table, expected_output): |
| predicted_result = [result[1] for result in |
| self.t_env.to_data_stream(output_table).execute_and_collect()] |
| expected_output.sort(key=lambda x: x[89917]) |
| predicted_result.sort(key=lambda x: x[89917]) |
| self.assertEqual(len(expected_output), len(predicted_result)) |
| |
| for i in range(len(expected_output)): |
| self.assertEqual(expected_output[i], predicted_result[i]) |
| |
| def test_transform(self): |
| hashing_tf = HashingTF() |
| |
| # Tests non-binary. |
| output = hashing_tf.transform(self.input_data_table)[0] |
| self.verify_output_result(output, self.expected_output) |
| |
| # Tests binary. |
| hashing_tf.set_binary(True) |
| output = hashing_tf.transform(self.input_data_table)[0] |
| self.verify_output_result(output, self.expected_binary_output) |
| |
| def test_save_load_transform(self): |
| hashingtf = HashingTF() |
| path = os.path.join(self.temp_dir, 'test_save_load_transform_hashingtf') |
| hashingtf.save(path) |
| hashingtf = HashingTF.load(self.t_env, path) |
| output = hashingtf.transform(self.input_data_table)[0] |
| self.verify_output_result(output, self.expected_output) |