blob: 2974b010697875aa3d2c7b9855d135ced07edb70 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
import os
from pyflink.common import Types
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.normalizer import Normalizer
from pyflink.ml.tests.test_utils import PyFlinkMLTestCase
class NormalizerTest(PyFlinkMLTestCase):
def setUp(self):
super(NormalizerTest, self).setUp()
self.input_data_table = self.t_env.from_data_stream(
self.env.from_collection([
(Vectors.dense(2.1, 3.1, 2.3, 3.4, 5.3, 5.1),),
(Vectors.dense(2.3, 4.1, 1.3, 2.4, 5.1, 4.1),),
],
type_info=Types.ROW_NAMED(
["intput_vec"],
[DenseVectorTypeInfo()])))
self.expected_output_data = [
Vectors.dense(
0.17386300895299714,
0.25665491797823387,
0.19042139075804446,
0.28149249068580484,
0.43879711783375464,
0.42223873602870726),
Vectors.dense(
0.20785190042726007,
0.3705186051094636,
0.11748150893714701,
0.2168889395762714,
0.4608889965995767,
0.3705186051094636)]
def test_param(self):
normalizer = Normalizer()
self.assertEqual('input', normalizer.get_input_col())
self.assertEqual('output', normalizer.get_output_col())
self.assertEqual(2.0, normalizer.get_p())
normalizer.set_input_col("intput_vec") \
.set_output_col('output_vec') \
.set_p(1.5)
self.assertEqual("intput_vec", normalizer.get_input_col())
self.assertEqual(1.5, normalizer.get_p())
self.assertEqual(float, type(normalizer.get_p()))
self.assertEqual('output_vec', normalizer.get_output_col())
def test_save_load_transform(self):
normalizer = Normalizer() \
.set_input_col("intput_vec") \
.set_output_col('output_vec') \
.set_p(1.5)
path = os.path.join(self.temp_dir, 'test_save_load_transform_normalizer')
normalizer.save(path)
normalizer = Normalizer.load(self.t_env, path)
output_table = normalizer.transform(self.input_data_table)[0]
actual_outputs = [(result[1]) for result in
self.t_env.to_data_stream(output_table).execute_and_collect()]
self.assertEqual(2, len(actual_outputs))
actual_outputs.sort(key=lambda x: (x[0], x[1], x[2], x[3], x[4], x[5]))
self.expected_output_data.sort(key=lambda x: (x[0], x[1], x[2], x[3], x[4], x[5]))
self.assertEqual(self.expected_output_data, actual_outputs)