blob: b625d9c6748915c7f2200962276287d6638afcdc [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
from pyflink.ml.wrapper import JavaWithParams
from pyflink.ml.feature.common import JavaFeatureModel, JavaFeatureEstimator
from pyflink.ml.common.param import HasInputCol, HasOutputCol
class _MaxAbsScalerParams(
JavaWithParams,
HasInputCol,
HasOutputCol
):
def __init__(self, java_params):
super(_MaxAbsScalerParams, self).__init__(java_params)
class MaxAbsScalerModel(JavaFeatureModel, _MaxAbsScalerParams):
"""
A Model which transforms data using the model data computed by :class:`MaxAbsScaler`.
"""
def __init__(self, java_model=None):
super(MaxAbsScalerModel, self).__init__(java_model)
@classmethod
def _java_model_package_name(cls) -> str:
return "maxabsscaler"
@classmethod
def _java_model_class_name(cls) -> str:
return "MaxAbsScalerModel"
class MaxAbsScaler(JavaFeatureEstimator, _MaxAbsScalerParams):
"""
An Estimator which implements the MaxAbsScaler algorithm. This algorithm rescales feature
values to the range [-1, 1] by dividing through the largest maximum absolute value in each
feature. It does not shift/center the data and thus does not destroy any sparsity.
"""
def __init__(self):
super(MaxAbsScaler, self).__init__()
@classmethod
def _create_model(cls, java_model) -> MaxAbsScalerModel:
return MaxAbsScalerModel(java_model)
@classmethod
def _java_estimator_package_name(cls) -> str:
return "maxabsscaler"
@classmethod
def _java_estimator_class_name(cls) -> str:
return "MaxAbsScaler"