| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that trains a KBinsDiscretizer model and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Types |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.feature.kbinsdiscretizer import KBinsDiscretizer |
| from pyflink.table import StreamTableEnvironment |
| |
| # Creates a new StreamExecutionEnvironment. |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # Creates a StreamTableEnvironment. |
| t_env = StreamTableEnvironment.create(env) |
| |
| # Generates input for training and prediction. |
| input_table = t_env.from_data_stream( |
| env.from_collection([ |
| (Vectors.dense(1, 10, 0),), |
| (Vectors.dense(1, 10, 0),), |
| (Vectors.dense(1, 10, 0),), |
| (Vectors.dense(4, 10, 0),), |
| (Vectors.dense(5, 10, 0),), |
| (Vectors.dense(6, 10, 0),), |
| (Vectors.dense(7, 10, 0),), |
| (Vectors.dense(10, 10, 0),), |
| (Vectors.dense(13, 10, 0),), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['input', ], |
| [DenseVectorTypeInfo(), ]))) |
| |
| # Creates a KBinsDiscretizer object and initializes its parameters. |
| k_bins_discretizer = KBinsDiscretizer() \ |
| .set_input_col('input') \ |
| .set_output_col('output') \ |
| .set_num_bins(3) \ |
| .set_strategy('uniform') |
| |
| # Trains the KBinsDiscretizer Model. |
| model = k_bins_discretizer.fit(input_table) |
| |
| # Uses the KBinsDiscretizer Model for predictions. |
| output = model.transform(input_table)[0] |
| |
| # Extracts and displays the results. |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| print('Input Value: ' + str(result[field_names.index(k_bins_discretizer.get_input_col())]) |
| + '\tOutput Value: ' + |
| str(result[field_names.index(k_bins_discretizer.get_output_col())])) |