blob: 1ffd20e61d81670f5169c83a19bed0b3dc957b95 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that converts a column of dense/sparse vectors into a column of double arrays.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment
from pyflink.ml.linalg import Vectors, VectorTypeInfo
from pyflink.ml.functions import vector_to_array
from pyflink.table.expressions import col
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input vector data
vectors = [
(Vectors.dense(0.0, 0.0),),
(Vectors.sparse(2, [1], [1.0]),),
]
input_table = t_env.from_data_stream(
env.from_collection(
vectors,
type_info=Types.ROW_NAMED(
['vector'],
[VectorTypeInfo()])
))
# convert each vector to a double array
output_table = input_table.select(vector_to_array(col('vector')).alias('array'))
# extract and display the results
output_values = [x for x in
t_env.to_data_stream(output_table).map(lambda r: r).execute_and_collect()]
output_values.sort(key=lambda x: x[0])
field_names = output_table.get_schema().get_field_names()
for i in range(len(output_values)):
vector = vectors[i][0]
double_array = output_values[i][field_names.index("array")]
print("Input vector: %s \t output double array: %s" % (vector, double_array))