blob: 07e18993b0c166221c0e8055026cd06ac55ec824 [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a RobustScaler instance and uses it for feature
# engineering.
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.table import StreamTableEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.robustscaler import RobustScaler
# Creates a new StreamExecutionEnvironment.
env = StreamExecutionEnvironment.get_execution_environment()
# Creates a StreamTableEnvironment.
t_env = StreamTableEnvironment.create(env)
# Generates input training and prediction data.
train_data = t_env.from_data_stream(
env.from_collection([
(1, Vectors.dense(0.0, 0.0),),
(2, Vectors.dense(1.0, -1.0),),
(3, Vectors.dense(2.0, -2.0),),
(4, Vectors.dense(3.0, -3.0),),
(5, Vectors.dense(4.0, -4.0),),
(6, Vectors.dense(5.0, -5.0),),
(7, Vectors.dense(6.0, -6.0),),
(8, Vectors.dense(7.0, -7.0),),
(9, Vectors.dense(8.0, -8.0),),
],
type_info=Types.ROW_NAMED(
['id', 'input'],
[Types.INT(), DenseVectorTypeInfo()])
))
# Creates an RobustScaler object and initializes its parameters.
robust_scaler = RobustScaler()\
.set_lower(0.25)\
.set_upper(0.75)\
.set_relative_error(0.001)\
.set_with_scaling(True)\
.set_with_centering(True)
# Trains the RobustScaler Model.
model = robust_scaler.fit(train_data)
# Uses the RobustScaler Model for predictions.
output = model.transform(train_data)[0]
# Extracts and displays the results.
field_names = output.get_schema().get_field_names()
for result in t_env.to_data_stream(output).execute_and_collect():
input_index = field_names.index(robust_scaler.get_input_col())
output_index = field_names.index(robust_scaler.get_output_col())
print('Input Value: ' + str(result[input_index]) +
'\tOutput Value: ' + str(result[output_index]))