| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that creates a RobustScaler instance and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.table import StreamTableEnvironment |
| |
| from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo |
| |
| from pyflink.ml.feature.robustscaler import RobustScaler |
| |
| # Creates a new StreamExecutionEnvironment. |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # Creates a StreamTableEnvironment. |
| t_env = StreamTableEnvironment.create(env) |
| |
| # Generates input training and prediction data. |
| train_data = t_env.from_data_stream( |
| env.from_collection([ |
| (1, Vectors.dense(0.0, 0.0),), |
| (2, Vectors.dense(1.0, -1.0),), |
| (3, Vectors.dense(2.0, -2.0),), |
| (4, Vectors.dense(3.0, -3.0),), |
| (5, Vectors.dense(4.0, -4.0),), |
| (6, Vectors.dense(5.0, -5.0),), |
| (7, Vectors.dense(6.0, -6.0),), |
| (8, Vectors.dense(7.0, -7.0),), |
| (9, Vectors.dense(8.0, -8.0),), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['id', 'input'], |
| [Types.INT(), DenseVectorTypeInfo()]) |
| )) |
| |
| # Creates an RobustScaler object and initializes its parameters. |
| robust_scaler = RobustScaler()\ |
| .set_lower(0.25)\ |
| .set_upper(0.75)\ |
| .set_relative_error(0.001)\ |
| .set_with_scaling(True)\ |
| .set_with_centering(True) |
| |
| # Trains the RobustScaler Model. |
| model = robust_scaler.fit(train_data) |
| |
| # Uses the RobustScaler Model for predictions. |
| output = model.transform(train_data)[0] |
| |
| # Extracts and displays the results. |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| input_index = field_names.index(robust_scaler.get_input_col()) |
| output_index = field_names.index(robust_scaler.get_output_col()) |
| print('Input Value: ' + str(result[input_index]) + |
| '\tOutput Value: ' + str(result[output_index])) |