| ################################################################################ |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| ################################################################################ |
| |
| # Simple program that creates an Imputer instance and uses it for feature |
| # engineering. |
| |
| from pyflink.common import Types |
| from pyflink.datastream import StreamExecutionEnvironment |
| from pyflink.ml.feature.imputer import Imputer |
| from pyflink.table import StreamTableEnvironment |
| |
| env = StreamExecutionEnvironment.get_execution_environment() |
| |
| # create a StreamTableEnvironment |
| t_env = StreamTableEnvironment.create(env) |
| |
| # generate input training and prediction data |
| train_data = t_env.from_data_stream( |
| env.from_collection([ |
| (float('NaN'), 9.0,), |
| (1.0, 9.0,), |
| (1.5, 7.0,), |
| (1.5, float('NaN'),), |
| (4.0, 5.0,), |
| (None, 4.0,), |
| ], |
| type_info=Types.ROW_NAMED( |
| ['input1', 'input2'], |
| [Types.DOUBLE(), Types.DOUBLE()]) |
| )) |
| |
| # Creates an Imputer object and initializes its parameters. |
| imputer = Imputer()\ |
| .set_input_cols('input1', 'input2')\ |
| .set_output_cols('output1', 'output2')\ |
| .set_strategy('mean')\ |
| .set_missing_value(float('NaN')) |
| |
| # Trains the Imputer Model. |
| model = imputer.fit(train_data) |
| |
| # Uses the Imputer Model for predictions. |
| output = model.transform(train_data)[0] |
| |
| # Extracts and displays the results. |
| field_names = output.get_schema().get_field_names() |
| for result in t_env.to_data_stream(output).execute_and_collect(): |
| input_values = [] |
| output_values = [] |
| for i in range(len(imputer.get_input_cols())): |
| input_values.append(result[field_names.index(imputer.get_input_cols()[i])]) |
| output_values.append(result[field_names.index(imputer.get_output_cols()[i])]) |
| print('Input Values: ' + str(input_values) + '\tOutput Values: ' + str(output_values)) |