blob: ebd1c75167c7ccfea4d41561cb9959b9cfe516be [file] [log] [blame]
################################################################################
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
# Simple program that creates a Binarizer instance and uses it for feature
# engineering.
#
# Before executing this program, please make sure you have followed Flink ML's
# quick start guideline to set up Flink ML and Flink environment. The guideline
# can be found at
#
# https://nightlies.apache.org/flink/flink-ml-docs-master/docs/try-flink-ml/quick-start/
from pyflink.common import Types
from pyflink.datastream import StreamExecutionEnvironment
from pyflink.ml.linalg import Vectors, DenseVectorTypeInfo
from pyflink.ml.feature.binarizer import Binarizer
from pyflink.table import StreamTableEnvironment
# create a new StreamExecutionEnvironment
env = StreamExecutionEnvironment.get_execution_environment()
# create a StreamTableEnvironment
t_env = StreamTableEnvironment.create(env)
# generate input data
input_data_table = t_env.from_data_stream(
env.from_collection([
(1,
Vectors.dense(3, 4)),
(2,
Vectors.dense(6, 2))
],
type_info=Types.ROW_NAMED(
['f0', 'f1'],
[Types.INT(), DenseVectorTypeInfo()])))
# create an binarizer object and initialize its parameters
binarizer = Binarizer() \
.set_input_cols('f0', 'f1') \
.set_output_cols('of0', 'of1') \
.set_thresholds(1.5, 3.5)
# use the binarizer for feature engineering
output = binarizer.transform(input_data_table)[0]
# extract and display the results
field_names = output.get_schema().get_field_names()
input_values = [None for _ in binarizer.get_input_cols()]
output_values = [None for _ in binarizer.get_output_cols()]
for result in t_env.to_data_stream(output).execute_and_collect():
for i in range(len(binarizer.get_input_cols())):
input_values[i] = result[field_names.index(binarizer.get_input_cols()[i])]
output_values[i] = result[field_names.index(binarizer.get_output_cols()[i])]
print('Input Values: ' + str(input_values) + '\tOutput Values: ' + str(output_values))