| /* | 
 | title: Heatmap - Discrete Mapping of Color | 
 | category: heatmap | 
 | titleCN: 热力图 - 颜色的离散映射 | 
 | difficulty: 2 | 
 | */ | 
 |  | 
 | var noise = getNoiseHelper(); | 
 | var xData = []; | 
 | var yData = []; | 
 | noise.seed(Math.random()); | 
 | function generateData(theta, min, max) { | 
 |   var data = []; | 
 |   for (var i = 0; i <= 200; i++) { | 
 |     for (var j = 0; j <= 100; j++) { | 
 |       // var x = (max - min) * i / 200 + min; | 
 |       // var y = (max - min) * j / 100 + min; | 
 |       data.push([i, j, noise.perlin2(i / 40, j / 20) + 0.5]); | 
 |       // data.push([i, j, normalDist(theta, x) * normalDist(theta, y)]); | 
 |     } | 
 |     xData.push(i); | 
 |   } | 
 |   for (var j = 0; j < 100; j++) { | 
 |     yData.push(j); | 
 |   } | 
 |   return data; | 
 | } | 
 | var data = generateData(2, -5, 5); | 
 |  | 
 | option = { | 
 |   tooltip: {}, | 
 |   grid: { | 
 |     right: 140, | 
 |     left: 40 | 
 |   }, | 
 |   xAxis: { | 
 |     type: 'category', | 
 |     data: xData | 
 |   }, | 
 |   yAxis: { | 
 |     type: 'category', | 
 |     data: yData | 
 |   }, | 
 |   visualMap: { | 
 |     type: 'piecewise', | 
 |     min: 0, | 
 |     max: 1, | 
 |     left: 'right', | 
 |     top: 'center', | 
 |     calculable: true, | 
 |     realtime: false, | 
 |     splitNumber: 8, | 
 |     inRange: { | 
 |       color: [ | 
 |         '#313695', | 
 |         '#4575b4', | 
 |         '#74add1', | 
 |         '#abd9e9', | 
 |         '#e0f3f8', | 
 |         '#ffffbf', | 
 |         '#fee090', | 
 |         '#fdae61', | 
 |         '#f46d43', | 
 |         '#d73027', | 
 |         '#a50026' | 
 |       ] | 
 |     } | 
 |   }, | 
 |   series: [ | 
 |     { | 
 |       name: 'Gaussian', | 
 |       type: 'heatmap', | 
 |       data: data, | 
 |       emphasis: { | 
 |         itemStyle: { | 
 |           borderColor: '#333', | 
 |           borderWidth: 1 | 
 |         } | 
 |       }, | 
 |       progressive: 1000, | 
 |       animation: false | 
 |     } | 
 |   ] | 
 | }; | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////// | 
 | // Simplex and perlin noise helper from https://github.com/josephg/noisejs | 
 | /////////////////////////////////////////////////////////////////////////// | 
 | function getNoiseHelper(global) { | 
 |   var module = {}; | 
 |  | 
 |   function Grad(x, y, z) { | 
 |     this.x = x; | 
 |     this.y = y; | 
 |     this.z = z; | 
 |   } | 
 |  | 
 |   Grad.prototype.dot2 = function (x, y) { | 
 |     return this.x * x + this.y * y; | 
 |   }; | 
 |  | 
 |   Grad.prototype.dot3 = function (x, y, z) { | 
 |     return this.x * x + this.y * y + this.z * z; | 
 |   }; | 
 |  | 
 |   var grad3 = [ | 
 |     new Grad(1, 1, 0), | 
 |     new Grad(-1, 1, 0), | 
 |     new Grad(1, -1, 0), | 
 |     new Grad(-1, -1, 0), | 
 |     new Grad(1, 0, 1), | 
 |     new Grad(-1, 0, 1), | 
 |     new Grad(1, 0, -1), | 
 |     new Grad(-1, 0, -1), | 
 |     new Grad(0, 1, 1), | 
 |     new Grad(0, -1, 1), | 
 |     new Grad(0, 1, -1), | 
 |     new Grad(0, -1, -1) | 
 |   ]; | 
 |  | 
 |   var p = [ | 
 |     151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, | 
 |     36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, | 
 |     234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, | 
 |     88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, | 
 |     134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, | 
 |     230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, | 
 |     1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, | 
 |     116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, | 
 |     124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, | 
 |     47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, | 
 |     154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, | 
 |     108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, | 
 |     242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, | 
 |     239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, | 
 |     50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, | 
 |     141, 128, 195, 78, 66, 215, 61, 156, 180 | 
 |   ]; | 
 |   // To remove the need for index wrapping, double the permutation table length | 
 |   var perm = new Array(512); | 
 |   var gradP = new Array(512); | 
 |  | 
 |   // This isn't a very good seeding function, but it works ok. It supports 2^16 | 
 |   // different seed values. Write something better if you need more seeds. | 
 |   module.seed = function (seed) { | 
 |     if (seed > 0 && seed < 1) { | 
 |       // Scale the seed out | 
 |       seed *= 65536; | 
 |     } | 
 |  | 
 |     seed = Math.floor(seed); | 
 |     if (seed < 256) { | 
 |       seed |= seed << 8; | 
 |     } | 
 |  | 
 |     for (var i = 0; i < 256; i++) { | 
 |       var v; | 
 |       if (i & 1) { | 
 |         v = p[i] ^ (seed & 255); | 
 |       } else { | 
 |         v = p[i] ^ ((seed >> 8) & 255); | 
 |       } | 
 |  | 
 |       perm[i] = perm[i + 256] = v; | 
 |       gradP[i] = gradP[i + 256] = grad3[v % 12]; | 
 |     } | 
 |   }; | 
 |  | 
 |   module.seed(0); | 
 |  | 
 |   /* | 
 |   for(var i=0; i<256; i++) { | 
 |     perm[i] = perm[i + 256] = p[i]; | 
 |     gradP[i] = gradP[i + 256] = grad3[perm[i] % 12]; | 
 |   }*/ | 
 |  | 
 |   // Skewing and unskewing factors for 2, 3, and 4 dimensions | 
 |   var F2 = 0.5 * (Math.sqrt(3) - 1); | 
 |   var G2 = (3 - Math.sqrt(3)) / 6; | 
 |  | 
 |   var F3 = 1 / 3; | 
 |   var G3 = 1 / 6; | 
 |  | 
 |   // 2D simplex noise | 
 |   module.simplex2 = function (xin, yin) { | 
 |     var n0, n1, n2; // Noise contributions from the three corners | 
 |     // Skew the input space to determine which simplex cell we're in | 
 |     var s = (xin + yin) * F2; // Hairy factor for 2D | 
 |     var i = Math.floor(xin + s); | 
 |     var j = Math.floor(yin + s); | 
 |     var t = (i + j) * G2; | 
 |     var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed. | 
 |     var y0 = yin - j + t; | 
 |     // For the 2D case, the simplex shape is an equilateral triangle. | 
 |     // Determine which simplex we are in. | 
 |     var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | 
 |     if (x0 > y0) { | 
 |       // lower triangle, XY order: (0,0)->(1,0)->(1,1) | 
 |       i1 = 1; | 
 |       j1 = 0; | 
 |     } else { | 
 |       // upper triangle, YX order: (0,0)->(0,1)->(1,1) | 
 |       i1 = 0; | 
 |       j1 = 1; | 
 |     } | 
 |     // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | 
 |     // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | 
 |     // c = (3-sqrt(3))/6 | 
 |     var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | 
 |     var y1 = y0 - j1 + G2; | 
 |     var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords | 
 |     var y2 = y0 - 1 + 2 * G2; | 
 |     // Work out the hashed gradient indices of the three simplex corners | 
 |     i &= 255; | 
 |     j &= 255; | 
 |     var gi0 = gradP[i + perm[j]]; | 
 |     var gi1 = gradP[i + i1 + perm[j + j1]]; | 
 |     var gi2 = gradP[i + 1 + perm[j + 1]]; | 
 |     // Calculate the contribution from the three corners | 
 |     var t0 = 0.5 - x0 * x0 - y0 * y0; | 
 |     if (t0 < 0) { | 
 |       n0 = 0; | 
 |     } else { | 
 |       t0 *= t0; | 
 |       n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient | 
 |     } | 
 |     var t1 = 0.5 - x1 * x1 - y1 * y1; | 
 |     if (t1 < 0) { | 
 |       n1 = 0; | 
 |     } else { | 
 |       t1 *= t1; | 
 |       n1 = t1 * t1 * gi1.dot2(x1, y1); | 
 |     } | 
 |     var t2 = 0.5 - x2 * x2 - y2 * y2; | 
 |     if (t2 < 0) { | 
 |       n2 = 0; | 
 |     } else { | 
 |       t2 *= t2; | 
 |       n2 = t2 * t2 * gi2.dot2(x2, y2); | 
 |     } | 
 |     // Add contributions from each corner to get the final noise value. | 
 |     // The result is scaled to return values in the interval [-1,1]. | 
 |     return 70 * (n0 + n1 + n2); | 
 |   }; | 
 |  | 
 |   // 3D simplex noise | 
 |   module.simplex3 = function (xin, yin, zin) { | 
 |     var n0, n1, n2, n3; // Noise contributions from the four corners | 
 |  | 
 |     // Skew the input space to determine which simplex cell we're in | 
 |     var s = (xin + yin + zin) * F3; // Hairy factor for 2D | 
 |     var i = Math.floor(xin + s); | 
 |     var j = Math.floor(yin + s); | 
 |     var k = Math.floor(zin + s); | 
 |  | 
 |     var t = (i + j + k) * G3; | 
 |     var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed. | 
 |     var y0 = yin - j + t; | 
 |     var z0 = zin - k + t; | 
 |  | 
 |     // For the 3D case, the simplex shape is a slightly irregular tetrahedron. | 
 |     // Determine which simplex we are in. | 
 |     var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords | 
 |     var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords | 
 |     if (x0 >= y0) { | 
 |       if (y0 >= z0) { | 
 |         i1 = 1; | 
 |         j1 = 0; | 
 |         k1 = 0; | 
 |         i2 = 1; | 
 |         j2 = 1; | 
 |         k2 = 0; | 
 |       } else if (x0 >= z0) { | 
 |         i1 = 1; | 
 |         j1 = 0; | 
 |         k1 = 0; | 
 |         i2 = 1; | 
 |         j2 = 0; | 
 |         k2 = 1; | 
 |       } else { | 
 |         i1 = 0; | 
 |         j1 = 0; | 
 |         k1 = 1; | 
 |         i2 = 1; | 
 |         j2 = 0; | 
 |         k2 = 1; | 
 |       } | 
 |     } else { | 
 |       if (y0 < z0) { | 
 |         i1 = 0; | 
 |         j1 = 0; | 
 |         k1 = 1; | 
 |         i2 = 0; | 
 |         j2 = 1; | 
 |         k2 = 1; | 
 |       } else if (x0 < z0) { | 
 |         i1 = 0; | 
 |         j1 = 1; | 
 |         k1 = 0; | 
 |         i2 = 0; | 
 |         j2 = 1; | 
 |         k2 = 1; | 
 |       } else { | 
 |         i1 = 0; | 
 |         j1 = 1; | 
 |         k1 = 0; | 
 |         i2 = 1; | 
 |         j2 = 1; | 
 |         k2 = 0; | 
 |       } | 
 |     } | 
 |     // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), | 
 |     // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and | 
 |     // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where | 
 |     // c = 1/6. | 
 |     var x1 = x0 - i1 + G3; // Offsets for second corner | 
 |     var y1 = y0 - j1 + G3; | 
 |     var z1 = z0 - k1 + G3; | 
 |  | 
 |     var x2 = x0 - i2 + 2 * G3; // Offsets for third corner | 
 |     var y2 = y0 - j2 + 2 * G3; | 
 |     var z2 = z0 - k2 + 2 * G3; | 
 |  | 
 |     var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner | 
 |     var y3 = y0 - 1 + 3 * G3; | 
 |     var z3 = z0 - 1 + 3 * G3; | 
 |  | 
 |     // Work out the hashed gradient indices of the four simplex corners | 
 |     i &= 255; | 
 |     j &= 255; | 
 |     k &= 255; | 
 |     var gi0 = gradP[i + perm[j + perm[k]]]; | 
 |     var gi1 = gradP[i + i1 + perm[j + j1 + perm[k + k1]]]; | 
 |     var gi2 = gradP[i + i2 + perm[j + j2 + perm[k + k2]]]; | 
 |     var gi3 = gradP[i + 1 + perm[j + 1 + perm[k + 1]]]; | 
 |  | 
 |     // Calculate the contribution from the four corners | 
 |     var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; | 
 |     if (t0 < 0) { | 
 |       n0 = 0; | 
 |     } else { | 
 |       t0 *= t0; | 
 |       n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient | 
 |     } | 
 |     var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; | 
 |     if (t1 < 0) { | 
 |       n1 = 0; | 
 |     } else { | 
 |       t1 *= t1; | 
 |       n1 = t1 * t1 * gi1.dot3(x1, y1, z1); | 
 |     } | 
 |     var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; | 
 |     if (t2 < 0) { | 
 |       n2 = 0; | 
 |     } else { | 
 |       t2 *= t2; | 
 |       n2 = t2 * t2 * gi2.dot3(x2, y2, z2); | 
 |     } | 
 |     var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; | 
 |     if (t3 < 0) { | 
 |       n3 = 0; | 
 |     } else { | 
 |       t3 *= t3; | 
 |       n3 = t3 * t3 * gi3.dot3(x3, y3, z3); | 
 |     } | 
 |     // Add contributions from each corner to get the final noise value. | 
 |     // The result is scaled to return values in the interval [-1,1]. | 
 |     return 32 * (n0 + n1 + n2 + n3); | 
 |   }; | 
 |  | 
 |   // ##### Perlin noise stuff | 
 |  | 
 |   function fade(t) { | 
 |     return t * t * t * (t * (t * 6 - 15) + 10); | 
 |   } | 
 |  | 
 |   function lerp(a, b, t) { | 
 |     return (1 - t) * a + t * b; | 
 |   } | 
 |  | 
 |   // 2D Perlin Noise | 
 |   module.perlin2 = function (x, y) { | 
 |     // Find unit grid cell containing point | 
 |     var X = Math.floor(x), | 
 |       Y = Math.floor(y); | 
 |     // Get relative xy coordinates of point within that cell | 
 |     x = x - X; | 
 |     y = y - Y; | 
 |     // Wrap the integer cells at 255 (smaller integer period can be introduced here) | 
 |     X = X & 255; | 
 |     Y = Y & 255; | 
 |  | 
 |     // Calculate noise contributions from each of the four corners | 
 |     var n00 = gradP[X + perm[Y]].dot2(x, y); | 
 |     var n01 = gradP[X + perm[Y + 1]].dot2(x, y - 1); | 
 |     var n10 = gradP[X + 1 + perm[Y]].dot2(x - 1, y); | 
 |     var n11 = gradP[X + 1 + perm[Y + 1]].dot2(x - 1, y - 1); | 
 |  | 
 |     // Compute the fade curve value for x | 
 |     var u = fade(x); | 
 |  | 
 |     // Interpolate the four results | 
 |     return lerp(lerp(n00, n10, u), lerp(n01, n11, u), fade(y)); | 
 |   }; | 
 |  | 
 |   // 3D Perlin Noise | 
 |   module.perlin3 = function (x, y, z) { | 
 |     // Find unit grid cell containing point | 
 |     var X = Math.floor(x), | 
 |       Y = Math.floor(y), | 
 |       Z = Math.floor(z); | 
 |     // Get relative xyz coordinates of point within that cell | 
 |     x = x - X; | 
 |     y = y - Y; | 
 |     z = z - Z; | 
 |     // Wrap the integer cells at 255 (smaller integer period can be introduced here) | 
 |     X = X & 255; | 
 |     Y = Y & 255; | 
 |     Z = Z & 255; | 
 |  | 
 |     // Calculate noise contributions from each of the eight corners | 
 |     var n000 = gradP[X + perm[Y + perm[Z]]].dot3(x, y, z); | 
 |     var n001 = gradP[X + perm[Y + perm[Z + 1]]].dot3(x, y, z - 1); | 
 |     var n010 = gradP[X + perm[Y + 1 + perm[Z]]].dot3(x, y - 1, z); | 
 |     var n011 = gradP[X + perm[Y + 1 + perm[Z + 1]]].dot3(x, y - 1, z - 1); | 
 |     var n100 = gradP[X + 1 + perm[Y + perm[Z]]].dot3(x - 1, y, z); | 
 |     var n101 = gradP[X + 1 + perm[Y + perm[Z + 1]]].dot3(x - 1, y, z - 1); | 
 |     var n110 = gradP[X + 1 + perm[Y + 1 + perm[Z]]].dot3(x - 1, y - 1, z); | 
 |     var n111 = gradP[X + 1 + perm[Y + 1 + perm[Z + 1]]].dot3( | 
 |       x - 1, | 
 |       y - 1, | 
 |       z - 1 | 
 |     ); | 
 |  | 
 |     // Compute the fade curve value for x, y, z | 
 |     var u = fade(x); | 
 |     var v = fade(y); | 
 |     var w = fade(z); | 
 |  | 
 |     // Interpolate | 
 |     return lerp( | 
 |       lerp(lerp(n000, n100, u), lerp(n001, n101, u), w), | 
 |       lerp(lerp(n010, n110, u), lerp(n011, n111, u), w), | 
 |       v | 
 |     ); | 
 |   }; | 
 |  | 
 |   return module; | 
 | } |