blob: 8d1cbdd69acc1dd236a1adb760aa90a849025f34 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
// This file is copied from
// https://github.com/ClickHouse/ClickHouse/blob/master/src/Columns/ColumnArray.cpp
// and modified by Doris
#include "vec/columns/column_array.h"
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <boost/iterator/iterator_facade.hpp>
#include <limits>
#include <memory>
#include <vector>
#include "vec/columns/column_const.h"
#include "vec/columns/column_nullable.h"
#include "vec/columns/column_string.h"
#include "vec/columns/columns_common.h"
#include "vec/columns/columns_number.h"
#include "vec/common/arena.h"
#include "vec/common/assert_cast.h"
#include "vec/common/memcpy_small.h"
#include "vec/common/typeid_cast.h"
#include "vec/common/unaligned.h"
#include "vec/data_types/data_type.h"
class SipHash;
namespace doris::vectorized {
namespace ErrorCodes {
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
extern const int LOGICAL_ERROR;
extern const int TOO_LARGE_ARRAY_SIZE;
} // namespace ErrorCodes
template <typename T>
ColumnPtr ColumnArray::index_impl(const PaddedPODArray<T>& indexes, size_t limit) const {
assert(limit <= indexes.size());
if (limit == 0) {
return ColumnArray::create(data->clone_empty());
}
/// Convert indexes to UInt64 in case of overflow.
auto nested_indexes_column = ColumnUInt64::create();
PaddedPODArray<UInt64>& nested_indexes = nested_indexes_column->get_data();
nested_indexes.reserve(get_offsets().back());
auto res = ColumnArray::create(data->clone_empty());
Offsets64& res_offsets = res->get_offsets();
res_offsets.resize(limit);
size_t current_offset = 0;
for (size_t i = 0; i < limit; ++i) {
for (size_t j = 0; j < size_at(indexes[i]); ++j) {
nested_indexes.push_back(offset_at(indexes[i]) + j);
}
current_offset += size_at(indexes[i]);
res_offsets[i] = current_offset;
}
if (current_offset != 0) {
res->data = data->index(*nested_indexes_column, current_offset);
}
return res;
}
ColumnPtr ColumnArray::index(const IColumn& indexes, size_t limit) const {
return select_index_impl(*this, indexes, limit);
}
INSTANTIATE_INDEX_IMPL(ColumnArray)
ColumnArray::ColumnArray(MutableColumnPtr&& nested_column, MutableColumnPtr&& offsets_column)
: data(std::move(nested_column)), offsets(std::move(offsets_column)) {
const ColumnOffsets* offsets_concrete = typeid_cast<const ColumnOffsets*>(offsets.get());
if (!offsets_concrete) {
LOG(FATAL) << "offsets_column must be a ColumnUInt64";
}
if (!offsets_concrete->empty() && data) {
auto last_offset = offsets_concrete->get_data().back();
/// This will also prevent possible overflow in offset.
if (data->size() != last_offset) {
LOG(FATAL) << "offsets_column has data inconsistent with nested_column";
}
}
/** NOTE
* Arrays with constant value are possible and used in implementation of higher order functions (see FunctionReplicate).
* But in most cases, arrays with constant value are unexpected and code will work wrong. Use with caution.
*/
}
ColumnArray::ColumnArray(MutableColumnPtr&& nested_column) : data(std::move(nested_column)) {
if (!data->empty()) {
LOG(FATAL) << "Not empty data passed to ColumnArray, but no offsets passed";
}
offsets = ColumnOffsets::create();
}
MutableColumnPtr ColumnArray::get_shrinked_column() {
return ColumnArray::create(data->get_shrinked_column(), offsets->assume_mutable());
}
std::string ColumnArray::get_name() const {
return "Array(" + get_data().get_name() + ")";
}
MutableColumnPtr ColumnArray::clone_resized(size_t to_size) const {
auto res = ColumnArray::create(get_data().clone_empty());
if (to_size == 0) return res;
size_t from_size = size();
if (to_size <= from_size) {
/// Just cut column.
res->get_offsets().assign(get_offsets().begin(), get_offsets().begin() + to_size);
res->get_data().insert_range_from(get_data(), 0, get_offsets()[to_size - 1]);
} else {
/// Copy column and append empty arrays for extra elements.
Offset64 offset = 0;
if (from_size > 0) {
res->get_offsets().assign(get_offsets().begin(), get_offsets().end());
res->get_data().insert_range_from(get_data(), 0, get_data().size());
offset = get_offsets().back();
}
res->get_offsets().resize(to_size);
for (size_t i = from_size; i < to_size; ++i) res->get_offsets()[i] = offset;
}
return res;
}
size_t ColumnArray::size() const {
return get_offsets().size();
}
Field ColumnArray::operator[](size_t n) const {
size_t offset = offset_at(n);
size_t size = size_at(n);
if (size > max_array_size_as_field)
LOG(FATAL) << "Array of size " << size << " is too large to be manipulated as single field,"
<< "maximum size " << max_array_size_as_field;
Array res(size);
for (size_t i = 0; i < size; ++i) res[i] = get_data()[offset + i];
return res;
}
void ColumnArray::get(size_t n, Field& res) const {
size_t offset = offset_at(n);
size_t size = size_at(n);
if (size > max_array_size_as_field)
LOG(FATAL) << "Array of size " << size << " is too large to be manipulated as single field,"
<< " maximum size " << max_array_size_as_field;
res = Array(size);
Array& res_arr = doris::vectorized::get<Array&>(res);
for (size_t i = 0; i < size; ++i) get_data().get(offset + i, res_arr[i]);
}
StringRef ColumnArray::get_data_at(size_t n) const {
/** Returns the range of memory that covers all elements of the array.
* Works for arrays of fixed length values.
* For arrays of strings and arrays of arrays, the resulting chunk of memory may not be one-to-one correspondence with the elements,
* since it contains only the data laid in succession, but not the offsets.
*/
size_t offset_of_first_elem = offset_at(n);
StringRef first;
if (offset_of_first_elem < get_data().size()) {
first = get_data().get_data_at(offset_of_first_elem);
}
size_t array_size = size_at(n);
if (array_size == 0) {
return StringRef(first.data, 0);
}
size_t offset_of_last_elem = offset_at(n + 1) - 1;
StringRef last = get_data().get_data_at(offset_of_last_elem);
return StringRef(first.data, last.data + last.size - first.data);
}
bool ColumnArray::is_default_at(size_t n) const {
const auto& offsets_data = get_offsets();
return offsets_data[n] == offsets_data[static_cast<ssize_t>(n) - 1];
}
void ColumnArray::insert_data(const char* pos, size_t length) {
/** Similarly - only for arrays of fixed length values.
*/
if (!data->is_fixed_and_contiguous())
LOG(FATAL) << "Method insert_data is not supported for " << get_name();
size_t field_size = data->size_of_value_if_fixed();
size_t elems = 0;
if (length) {
const char* end = pos + length;
for (; pos + field_size <= end; pos += field_size, ++elems)
data->insert_data(pos, field_size);
if (pos != end)
LOG(FATAL) << "Incorrect length argument for method ColumnArray::insert_data";
}
get_offsets().push_back(get_offsets().back() + elems);
}
StringRef ColumnArray::serialize_value_into_arena(size_t n, Arena& arena,
char const*& begin) const {
size_t array_size = size_at(n);
size_t offset = offset_at(n);
char* pos = arena.alloc_continue(sizeof(array_size), begin);
memcpy(pos, &array_size, sizeof(array_size));
StringRef res(pos, sizeof(array_size));
for (size_t i = 0; i < array_size; ++i) {
auto value_ref = get_data().serialize_value_into_arena(offset + i, arena, begin);
res.data = value_ref.data - res.size;
res.size += value_ref.size;
}
return res;
}
int ColumnArray::compare_at(size_t n, size_t m, const IColumn& rhs_, int nan_direction_hint) const {
// since column type is complex, we can't use this function
const auto& rhs = assert_cast<const ColumnArray&>(rhs_);
size_t lhs_size = size_at(n);
size_t rhs_size = rhs.size_at(m);
size_t min_size = std::min(lhs_size, rhs_size);
for (size_t i = 0; i < min_size; ++i) {
if (int res = get_data().compare_at(offset_at(n) + i, rhs.offset_at(m) + i, *rhs.data.get(),
nan_direction_hint);
res) {
// if res != 0 , here is something different ,just return
return res;
}
}
// then we check size of array
return lhs_size < rhs_size ? -1 : (lhs_size == rhs_size ? 0 : 1);
}
const char* ColumnArray::deserialize_and_insert_from_arena(const char* pos) {
size_t array_size = unaligned_load<size_t>(pos);
pos += sizeof(array_size);
for (size_t i = 0; i < array_size; ++i) pos = get_data().deserialize_and_insert_from_arena(pos);
get_offsets().push_back(get_offsets().back() + array_size);
return pos;
}
void ColumnArray::update_hash_with_value(size_t n, SipHash& hash) const {
size_t array_size = size_at(n);
size_t offset = offset_at(n);
for (size_t i = 0; i < array_size; ++i) get_data().update_hash_with_value(offset + i, hash);
}
void ColumnArray::update_hashes_with_value(std::vector<SipHash>& hashes,
const uint8_t* __restrict null_data) const {
SIP_HASHES_FUNCTION_COLUMN_IMPL();
}
// for every array row calculate xxHash
void ColumnArray::update_xxHash_with_value(size_t start, size_t end, uint64_t& hash,
const uint8_t* __restrict null_data) const {
auto& offsets_column = get_offsets();
if (null_data) {
for (size_t i = start; i < end; ++i) {
if (null_data[i] == 0) {
size_t elem_size = offsets_column[i] - offsets_column[i - 1];
if (elem_size == 0) {
hash = HashUtil::xxHash64WithSeed(reinterpret_cast<const char*>(&elem_size),
sizeof(elem_size), hash);
} else {
get_data().update_xxHash_with_value(offsets_column[i - 1], offsets_column[i],
hash, nullptr);
}
}
}
} else {
for (size_t i = start; i < end; ++i) {
size_t elem_size = offsets_column[i] - offsets_column[i - 1];
if (elem_size == 0) {
hash = HashUtil::xxHash64WithSeed(reinterpret_cast<const char*>(&elem_size),
sizeof(elem_size), hash);
} else {
get_data().update_xxHash_with_value(offsets_column[i - 1], offsets_column[i], hash,
nullptr);
}
}
}
}
// for every array row calculate crcHash
void ColumnArray::update_crc_with_value(size_t start, size_t end, uint32_t& hash,
const uint8_t* __restrict null_data) const {
auto& offsets_column = get_offsets();
if (null_data) {
for (size_t i = start; i < end; ++i) {
if (null_data[i] == 0) {
size_t elem_size = offsets_column[i] - offsets_column[i - 1];
if (elem_size == 0) {
hash = HashUtil::zlib_crc_hash(reinterpret_cast<const char*>(&elem_size),
sizeof(elem_size), hash);
} else {
get_data().update_crc_with_value(offsets_column[i - 1], offsets_column[i], hash,
nullptr);
}
}
}
} else {
for (size_t i = start; i < end; ++i) {
size_t elem_size = offsets_column[i] - offsets_column[i - 1];
if (elem_size == 0) {
hash = HashUtil::zlib_crc_hash(reinterpret_cast<const char*>(&elem_size),
sizeof(elem_size), hash);
} else {
get_data().update_crc_with_value(offsets_column[i - 1], offsets_column[i], hash,
nullptr);
}
}
}
}
void ColumnArray::update_hashes_with_value(uint64_t* __restrict hashes,
const uint8_t* __restrict null_data) const {
auto s = size();
if (null_data) {
for (size_t i = 0; i < s; ++i) {
if (null_data[i] == 0) {
update_xxHash_with_value(i, i + 1, hashes[i], nullptr);
}
}
} else {
for (size_t i = 0; i < s; ++i) {
update_xxHash_with_value(i, i + 1, hashes[i], nullptr);
}
}
}
void ColumnArray::update_crcs_with_value(uint32_t* __restrict hash, PrimitiveType type,
uint32_t rows, uint32_t offset,
const uint8_t* __restrict null_data) const {
auto s = rows;
DCHECK(s == size());
if (null_data) {
for (size_t i = 0; i < s; ++i) {
// every row
if (null_data[i] == 0) {
update_crc_with_value(i, i + 1, hash[i], nullptr);
}
}
} else {
for (size_t i = 0; i < s; ++i) {
update_crc_with_value(i, i + 1, hash[i], nullptr);
}
}
}
void ColumnArray::insert(const Field& x) {
if (x.is_null()) {
get_data().insert(Null());
get_offsets().push_back(get_offsets().back() + 1);
} else {
const auto& array = doris::vectorized::get<const Array&>(x);
size_t size = array.size();
for (size_t i = 0; i < size; ++i) {
get_data().insert(array[i]);
}
get_offsets().push_back(get_offsets().back() + size);
}
}
void ColumnArray::insert_from(const IColumn& src_, size_t n) {
DCHECK(n < src_.size());
const ColumnArray& src = assert_cast<const ColumnArray&>(src_);
size_t size = src.size_at(n);
size_t offset = src.offset_at(n);
if (!get_data().is_nullable() && src.get_data().is_nullable()) {
// Note: we can't process the case of 'Array(Nullable(nest))'
DCHECK(false);
} else if (get_data().is_nullable() && !src.get_data().is_nullable()) {
// Note: here we should process the case of 'Array(NotNullable(nest))'
reinterpret_cast<ColumnNullable*>(&get_data())
->insert_range_from_not_nullable(src.get_data(), offset, size);
} else {
get_data().insert_range_from(src.get_data(), offset, size);
}
get_offsets().push_back(get_offsets().back() + size);
}
void ColumnArray::insert_default() {
/// NOTE 1: We can use back() even if the array is empty (due to zero -1th element in PODArray).
/// NOTE 2: We cannot use reference in push_back, because reference get invalidated if array is reallocated.
auto last_offset = get_offsets().back();
get_offsets().push_back(last_offset);
}
void ColumnArray::pop_back(size_t n) {
auto& offsets_data = get_offsets();
DCHECK(n <= offsets_data.size());
size_t nested_n = offsets_data.back() - offset_at(offsets_data.size() - n);
if (nested_n) get_data().pop_back(nested_n);
offsets_data.resize_assume_reserved(offsets_data.size() - n);
}
void ColumnArray::reserve(size_t n) {
get_offsets().reserve(n);
get_data().reserve(
n); /// The average size of arrays is not taken into account here. Or it is considered to be no more than 1.
}
//please check you real need size in data column, because it's maybe need greater size when data is string column
void ColumnArray::resize(size_t n) {
auto last_off = get_offsets().back();
get_offsets().resize_fill(n, last_off);
}
size_t ColumnArray::byte_size() const {
return get_data().byte_size() + get_offsets().size() * sizeof(get_offsets()[0]);
}
size_t ColumnArray::allocated_bytes() const {
return get_data().allocated_bytes() + get_offsets().allocated_bytes();
}
ColumnPtr ColumnArray::convert_to_full_column_if_const() const {
/// It is possible to have an array with constant data and non-constant offsets.
/// Example is the result of expression: replicate('hello', [1])
return ColumnArray::create(data->convert_to_full_column_if_const(), offsets);
}
bool ColumnArray::has_equal_offsets(const ColumnArray& other) const {
const Offsets64& offsets1 = get_offsets();
const Offsets64& offsets2 = other.get_offsets();
return offsets1.size() == offsets2.size() &&
(offsets1.empty() ||
0 == memcmp(offsets1.data(), offsets2.data(), sizeof(offsets1[0]) * offsets1.size()));
}
void ColumnArray::insert_range_from(const IColumn& src, size_t start, size_t length) {
if (length == 0) return;
const ColumnArray& src_concrete = assert_cast<const ColumnArray&>(src);
if (start + length > src_concrete.get_offsets().size())
LOG(FATAL) << "Parameter out of bound in ColumnArray::insert_range_from method. [start("
<< std::to_string(start) << ") + length(" << std::to_string(length)
<< ") > offsets.size(" << std::to_string(src_concrete.get_offsets().size())
<< ")]";
size_t nested_offset = src_concrete.offset_at(start);
size_t nested_length = src_concrete.get_offsets()[start + length - 1] - nested_offset;
get_data().insert_range_from(src_concrete.get_data(), nested_offset, nested_length);
auto& cur_offsets = get_offsets();
const auto& src_offsets = src_concrete.get_offsets();
if (start == 0 && cur_offsets.empty()) {
cur_offsets.assign(src_offsets.begin(), src_offsets.begin() + length);
} else {
size_t old_size = cur_offsets.size();
// -1 is ok, because PaddedPODArray pads zeros on the left.
size_t prev_max_offset = cur_offsets.back();
cur_offsets.resize(old_size + length);
for (size_t i = 0; i < length; ++i)
cur_offsets[old_size + i] = src_offsets[start + i] - nested_offset + prev_max_offset;
}
}
double ColumnArray::get_ratio_of_default_rows(double sample_ratio) const {
return get_ratio_of_default_rows_impl<ColumnArray>(sample_ratio);
}
ColumnPtr ColumnArray::filter(const Filter& filt, ssize_t result_size_hint) const {
if (typeid_cast<const ColumnUInt8*>(data.get()))
return filter_number<UInt8>(filt, result_size_hint);
if (typeid_cast<const ColumnUInt16*>(data.get()))
return filter_number<UInt16>(filt, result_size_hint);
if (typeid_cast<const ColumnUInt32*>(data.get()))
return filter_number<UInt32>(filt, result_size_hint);
if (typeid_cast<const ColumnUInt64*>(data.get()))
return filter_number<UInt64>(filt, result_size_hint);
if (typeid_cast<const ColumnInt8*>(data.get()))
return filter_number<Int8>(filt, result_size_hint);
if (typeid_cast<const ColumnInt16*>(data.get()))
return filter_number<Int16>(filt, result_size_hint);
if (typeid_cast<const ColumnInt32*>(data.get()))
return filter_number<Int32>(filt, result_size_hint);
if (typeid_cast<const ColumnInt64*>(data.get()))
return filter_number<Int64>(filt, result_size_hint);
if (typeid_cast<const ColumnFloat32*>(data.get()))
return filter_number<Float32>(filt, result_size_hint);
if (typeid_cast<const ColumnFloat64*>(data.get()))
return filter_number<Float64>(filt, result_size_hint);
if (typeid_cast<const ColumnString*>(data.get())) return filter_string(filt, result_size_hint);
//if (typeid_cast<const ColumnTuple *>(data.get())) return filterTuple(filt, result_size_hint);
if (typeid_cast<const ColumnNullable*>(data.get()))
return filter_nullable(filt, result_size_hint);
return filter_generic(filt, result_size_hint);
}
size_t ColumnArray::filter(const Filter& filter) {
if (typeid_cast<const ColumnUInt8*>(data.get())) {
return filter_number<UInt8>(filter);
} else if (typeid_cast<const ColumnUInt16*>(data.get())) {
return filter_number<UInt16>(filter);
} else if (typeid_cast<const ColumnUInt32*>(data.get())) {
return filter_number<UInt32>(filter);
} else if (typeid_cast<const ColumnUInt64*>(data.get())) {
return filter_number<UInt64>(filter);
} else if (typeid_cast<const ColumnInt8*>(data.get())) {
return filter_number<Int8>(filter);
} else if (typeid_cast<const ColumnInt16*>(data.get())) {
return filter_number<Int16>(filter);
} else if (typeid_cast<const ColumnInt32*>(data.get())) {
return filter_number<Int32>(filter);
} else if (typeid_cast<const ColumnInt64*>(data.get())) {
return filter_number<Int64>(filter);
} else if (typeid_cast<const ColumnFloat32*>(data.get())) {
return filter_number<Float32>(filter);
} else if (typeid_cast<const ColumnFloat64*>(data.get())) {
return filter_number<Float64>(filter);
} else if (typeid_cast<const ColumnString*>(data.get())) {
return filter_string(filter);
} else if (typeid_cast<const ColumnNullable*>(data.get())) {
return filter_nullable(filter);
} else {
return filter_generic(filter);
}
}
template <typename T>
ColumnPtr ColumnArray::filter_number(const Filter& filt, ssize_t result_size_hint) const {
if (get_offsets().empty()) return ColumnArray::create(data);
auto res = ColumnArray::create(data->clone_empty());
auto& res_elems = assert_cast<ColumnVector<T>&>(res->get_data()).get_data();
auto& res_offsets = res->get_offsets();
filter_arrays_impl<T, Offset64>(assert_cast<const ColumnVector<T>&>(*data).get_data(),
get_offsets(), res_elems, res_offsets, filt, result_size_hint);
return res;
}
template <typename T>
size_t ColumnArray::filter_number(const Filter& filter) {
return filter_arrays_impl<T, Offset64>(assert_cast<ColumnVector<T>&>(*data).get_data(),
get_offsets(), filter);
}
ColumnPtr ColumnArray::filter_string(const Filter& filt, ssize_t result_size_hint) const {
size_t col_size = get_offsets().size();
column_match_filter_size(col_size, filt.size());
if (0 == col_size) return ColumnArray::create(data);
auto res = ColumnArray::create(data->clone_empty());
const ColumnString& src_string = typeid_cast<const ColumnString&>(*data);
const ColumnString::Chars& src_chars = src_string.get_chars();
const auto& src_string_offsets = src_string.get_offsets();
const auto& src_offsets = get_offsets();
ColumnString::Chars& res_chars = typeid_cast<ColumnString&>(res->get_data()).get_chars();
auto& res_string_offsets = typeid_cast<ColumnString&>(res->get_data()).get_offsets();
auto& res_offsets = res->get_offsets();
if (result_size_hint < 0) {
res_chars.reserve(src_chars.size());
res_string_offsets.reserve(src_string_offsets.size());
res_offsets.reserve(col_size);
}
Offset64 prev_src_offset = 0;
IColumn::Offset prev_src_string_offset = 0;
Offset64 prev_res_offset = 0;
IColumn::Offset prev_res_string_offset = 0;
for (size_t i = 0; i < col_size; ++i) {
/// Number of rows in the array.
size_t array_size = src_offsets[i] - prev_src_offset;
if (filt[i]) {
/// If the array is not empty - copy content.
if (array_size) {
size_t chars_to_copy = src_string_offsets[array_size + prev_src_offset - 1] -
prev_src_string_offset;
size_t res_chars_prev_size = res_chars.size();
res_chars.resize(res_chars_prev_size + chars_to_copy);
memcpy(&res_chars[res_chars_prev_size], &src_chars[prev_src_string_offset],
chars_to_copy);
for (size_t j = 0; j < array_size; ++j)
res_string_offsets.push_back(src_string_offsets[j + prev_src_offset] +
prev_res_string_offset - prev_src_string_offset);
prev_res_string_offset = res_string_offsets.back();
}
prev_res_offset += array_size;
res_offsets.push_back(prev_res_offset);
}
if (array_size) {
prev_src_offset += array_size;
prev_src_string_offset = src_string_offsets[prev_src_offset - 1];
}
}
return res;
}
size_t ColumnArray::filter_string(const Filter& filter) {
size_t col_size = get_offsets().size();
column_match_filter_size(col_size, filter.size());
if (0 == col_size) {
return ColumnArray::create(data);
}
ColumnString& src_string = typeid_cast<ColumnString&>(*data);
auto* src_chars = src_string.get_chars().data();
auto* src_string_offsets = src_string.get_offsets().data();
auto* src_offsets = get_offsets().data();
ColumnString::Chars& res_chars = src_string.get_chars();
auto& res_string_offsets = src_string.get_offsets();
auto& res_offsets = get_offsets();
res_chars.set_end_ptr(res_chars.data());
res_string_offsets.set_end_ptr(res_string_offsets.data());
res_offsets.set_end_ptr(res_offsets.data());
Offset64 prev_src_offset = 0;
IColumn::Offset prev_src_string_offset = 0;
Offset64 prev_res_offset = 0;
IColumn::Offset prev_res_string_offset = 0;
for (size_t i = 0; i < col_size; ++i) {
/// Number of rows in the array.
size_t array_size = src_offsets[i] - prev_src_offset;
if (filter[i]) {
/// If the array is not empty - copy content.
if (array_size) {
size_t chars_to_copy = src_string_offsets[array_size + prev_src_offset - 1] -
prev_src_string_offset;
size_t res_chars_prev_size = res_chars.size();
res_chars.resize(res_chars_prev_size + chars_to_copy);
memmove(&res_chars[res_chars_prev_size], &src_chars[prev_src_string_offset],
chars_to_copy);
for (size_t j = 0; j < array_size; ++j) {
res_string_offsets.push_back(src_string_offsets[j + prev_src_offset] +
prev_res_string_offset - prev_src_string_offset);
}
prev_res_string_offset = res_string_offsets.back();
}
prev_res_offset += array_size;
res_offsets.push_back(prev_res_offset);
}
if (array_size) {
prev_src_offset += array_size;
prev_src_string_offset = src_string_offsets[prev_src_offset - 1];
}
}
return res_offsets.size();
}
ColumnPtr ColumnArray::filter_generic(const Filter& filt, ssize_t result_size_hint) const {
size_t size = get_offsets().size();
column_match_filter_size(size, filt.size());
if (size == 0) return ColumnArray::create(data);
Filter nested_filt(get_offsets().back());
for (size_t i = 0; i < size; ++i) {
if (filt[i])
memset(&nested_filt[offset_at(i)], 1, size_at(i));
else
memset(&nested_filt[offset_at(i)], 0, size_at(i));
}
auto res = ColumnArray::create(data->clone_empty());
ssize_t nested_result_size_hint = 0;
if (result_size_hint < 0)
nested_result_size_hint = result_size_hint;
else if (result_size_hint && result_size_hint < 1000000000 &&
data->size() < 1000000000) /// Avoid overflow.
nested_result_size_hint = result_size_hint * data->size() / size;
res->data = data->filter(nested_filt, nested_result_size_hint);
auto& res_offsets = res->get_offsets();
if (result_size_hint) res_offsets.reserve(result_size_hint > 0 ? result_size_hint : size);
size_t current_offset = 0;
for (size_t i = 0; i < size; ++i) {
if (filt[i]) {
current_offset += size_at(i);
res_offsets.push_back(current_offset);
}
}
return res;
}
size_t ColumnArray::filter_generic(const Filter& filter) {
size_t size = get_offsets().size();
column_match_filter_size(size, filter.size());
if (size == 0) {
return 0;
}
Filter nested_filter(get_offsets().back());
for (size_t i = 0; i < size; ++i) {
if (filter[i]) {
memset(&nested_filter[offset_at(i)], 1, size_at(i));
} else {
memset(&nested_filter[offset_at(i)], 0, size_at(i));
}
}
data->filter(nested_filter);
// Make a new offset to avoid inplace operation
auto res_offset = ColumnOffsets::create();
auto& res_offset_data = res_offset->get_data();
res_offset_data.reserve(size);
size_t current_offset = 0;
for (size_t i = 0; i < size; ++i) {
if (filter[i]) {
current_offset += size_at(i);
res_offset_data.push_back(current_offset);
}
}
get_offsets().swap(res_offset_data);
return get_offsets().size();
}
ColumnPtr ColumnArray::filter_nullable(const Filter& filt, ssize_t result_size_hint) const {
if (get_offsets().empty()) return ColumnArray::create(data);
const ColumnNullable& nullable_elems = assert_cast<const ColumnNullable&>(*data);
auto array_of_nested = ColumnArray::create(nullable_elems.get_nested_column_ptr(), offsets);
auto filtered_array_of_nested_owner = array_of_nested->filter(filt, result_size_hint);
const auto& filtered_array_of_nested =
assert_cast<const ColumnArray&>(*filtered_array_of_nested_owner);
const auto& filtered_offsets = filtered_array_of_nested.get_offsets_ptr();
auto res_null_map = ColumnUInt8::create();
filter_arrays_impl_only_data(nullable_elems.get_null_map_data(), get_offsets(),
res_null_map->get_data(), filt, result_size_hint);
return ColumnArray::create(ColumnNullable::create(filtered_array_of_nested.get_data_ptr(),
std::move(res_null_map)),
filtered_offsets);
}
size_t ColumnArray::filter_nullable(const Filter& filter) {
if (get_offsets().empty()) {
return 0;
}
ColumnNullable& nullable_elems = assert_cast<ColumnNullable&>(*data);
const auto result_size =
filter_arrays_impl_only_data(nullable_elems.get_null_map_data(), get_offsets(), filter);
auto array_of_nested = ColumnArray::create(nullable_elems.get_nested_column_ptr(), offsets);
const auto nested_result_size = array_of_nested->assume_mutable()->filter(filter);
CHECK_EQ(result_size, nested_result_size);
return result_size;
}
void ColumnArray::insert_indices_from(const IColumn& src, const uint32_t* indices_begin,
const uint32_t* indices_end) {
for (const auto* x = indices_begin; x != indices_end; ++x) {
ColumnArray::insert_from(src, *x);
}
}
ColumnPtr ColumnArray::replicate(const IColumn::Offsets& replicate_offsets) const {
if (replicate_offsets.empty()) return clone_empty();
// keep ColumnUInt8 for ColumnNullable::null_map
if (typeid_cast<const ColumnUInt8*>(data.get()))
return replicate_number<UInt8>(replicate_offsets);
if (typeid_cast<const ColumnInt8*>(data.get()))
return replicate_number<Int8>(replicate_offsets);
if (typeid_cast<const ColumnInt16*>(data.get()))
return replicate_number<Int16>(replicate_offsets);
if (typeid_cast<const ColumnInt32*>(data.get()))
return replicate_number<Int32>(replicate_offsets);
if (typeid_cast<const ColumnInt64*>(data.get()))
return replicate_number<Int64>(replicate_offsets);
if (typeid_cast<const ColumnFloat32*>(data.get()))
return replicate_number<Float32>(replicate_offsets);
if (typeid_cast<const ColumnFloat64*>(data.get()))
return replicate_number<Float64>(replicate_offsets);
if (typeid_cast<const ColumnString*>(data.get())) return replicate_string(replicate_offsets);
if (typeid_cast<const ColumnConst*>(data.get())) return replicate_const(replicate_offsets);
if (typeid_cast<const ColumnNullable*>(data.get()))
return replicate_nullable(replicate_offsets);
return replicate_generic(replicate_offsets);
}
void ColumnArray::replicate(const uint32_t* indices, size_t target_size, IColumn& column) const {
if (target_size == 0) {
return;
}
auto& dst_col = assert_cast<ColumnArray&>(column);
auto& dst_data_col = dst_col.get_data();
auto& dst_offsets = dst_col.get_offsets();
dst_offsets.reserve(target_size);
PODArray<uint32> data_indices_to_replicate;
for (size_t i = 0; i < target_size; ++i) {
const auto index = indices[i];
const auto start = offset_at(index);
const auto length = size_at(index);
dst_offsets.push_back(dst_offsets.back() + length);
if (UNLIKELY(length == 0)) {
continue;
}
data_indices_to_replicate.reserve(data_indices_to_replicate.size() + length);
for (size_t j = start; j != start + length; ++j) {
data_indices_to_replicate.push_back(j);
}
}
get_data().replicate(data_indices_to_replicate.data(), data_indices_to_replicate.size(),
dst_data_col);
}
template <typename T>
ColumnPtr ColumnArray::replicate_number(const IColumn::Offsets& replicate_offsets) const {
size_t col_size = size();
column_match_offsets_size(col_size, replicate_offsets.size());
MutableColumnPtr res = clone_empty();
if (0 == col_size) return res;
ColumnArray& res_arr = typeid_cast<ColumnArray&>(*res);
const typename ColumnVector<T>::Container& src_data =
typeid_cast<const ColumnVector<T>&>(*data).get_data();
const auto& src_offsets = get_offsets();
typename ColumnVector<T>::Container& res_data =
typeid_cast<ColumnVector<T>&>(res_arr.get_data()).get_data();
auto& res_offsets = res_arr.get_offsets();
res_data.reserve(data->size() / col_size * replicate_offsets.back());
res_offsets.reserve(replicate_offsets.back());
IColumn::Offset prev_replicate_offset = 0;
Offset64 prev_data_offset = 0;
Offset64 current_new_offset = 0;
for (size_t i = 0; i < col_size; ++i) {
size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset;
size_t value_size = src_offsets[i] - prev_data_offset;
for (size_t j = 0; j < size_to_replicate; ++j) {
current_new_offset += value_size;
res_offsets.push_back(current_new_offset);
if (value_size) {
res_data.resize(res_data.size() + value_size);
memcpy(&res_data[res_data.size() - value_size], &src_data[prev_data_offset],
value_size * sizeof(T));
}
}
prev_replicate_offset = replicate_offsets[i];
prev_data_offset = src_offsets[i];
}
return res;
}
ColumnPtr ColumnArray::replicate_string(const IColumn::Offsets& replicate_offsets) const {
size_t col_size = size();
column_match_offsets_size(col_size, replicate_offsets.size());
MutableColumnPtr res = clone_empty();
if (0 == col_size) return res;
ColumnArray& res_arr = assert_cast<ColumnArray&>(*res);
const ColumnString& src_string = typeid_cast<const ColumnString&>(*data);
const ColumnString::Chars& src_chars = src_string.get_chars();
const auto& src_string_offsets = src_string.get_offsets();
const auto& src_offsets = get_offsets();
ColumnString::Chars& res_chars = typeid_cast<ColumnString&>(res_arr.get_data()).get_chars();
auto& res_string_offsets = typeid_cast<ColumnString&>(res_arr.get_data()).get_offsets();
auto& res_offsets = res_arr.get_offsets();
res_chars.reserve(src_chars.size() / col_size * replicate_offsets.back());
res_string_offsets.reserve(src_string_offsets.size() / col_size * replicate_offsets.back());
res_offsets.reserve(replicate_offsets.back());
IColumn::Offset prev_replicate_offset = 0;
Offset64 prev_src_offset = 0;
IColumn::Offset prev_src_string_offset = 0;
Offset64 current_res_offset = 0;
IColumn::Offset current_res_string_offset = 0;
for (size_t i = 0; i < col_size; ++i) {
/// How many times to replicate the array.
size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset;
/// The number of strings in the array.
size_t value_size = src_offsets[i] - prev_src_offset;
/// Number of characters in strings of the array, including zero bytes.
size_t sum_chars_size = src_string_offsets[prev_src_offset + value_size - 1] -
prev_src_string_offset; /// -1th index is Ok, see PaddedPODArray.
for (size_t j = 0; j < size_to_replicate; ++j) {
current_res_offset += value_size;
res_offsets.push_back(current_res_offset);
size_t prev_src_string_offset_local = prev_src_string_offset;
for (size_t k = 0; k < value_size; ++k) {
/// Size of single string.
size_t chars_size =
src_string_offsets[k + prev_src_offset] - prev_src_string_offset_local;
current_res_string_offset += chars_size;
res_string_offsets.push_back(current_res_string_offset);
prev_src_string_offset_local += chars_size;
}
if (sum_chars_size) {
/// Copies the characters of the array of strings.
res_chars.resize(res_chars.size() + sum_chars_size);
memcpy_small_allow_read_write_overflow15(
&res_chars[res_chars.size() - sum_chars_size],
&src_chars[prev_src_string_offset], sum_chars_size);
}
}
prev_replicate_offset = replicate_offsets[i];
prev_src_offset = src_offsets[i];
prev_src_string_offset += sum_chars_size;
}
return res;
}
ColumnPtr ColumnArray::replicate_const(const IColumn::Offsets& replicate_offsets) const {
size_t col_size = size();
column_match_offsets_size(col_size, replicate_offsets.size());
if (0 == col_size) return clone_empty();
const auto& src_offsets = get_offsets();
auto res_column_offsets = ColumnOffsets::create();
auto& res_offsets = res_column_offsets->get_data();
res_offsets.reserve(replicate_offsets.back());
IColumn::Offset prev_replicate_offset = 0;
Offset64 prev_data_offset = 0;
Offset64 current_new_offset = 0;
for (size_t i = 0; i < col_size; ++i) {
size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset;
size_t value_size = src_offsets[i] - prev_data_offset;
for (size_t j = 0; j < size_to_replicate; ++j) {
current_new_offset += value_size;
res_offsets.push_back(current_new_offset);
}
prev_replicate_offset = replicate_offsets[i];
prev_data_offset = src_offsets[i];
}
return ColumnArray::create(get_data().clone_resized(current_new_offset),
std::move(res_column_offsets));
}
ColumnPtr ColumnArray::replicate_generic(const IColumn::Offsets& replicate_offsets) const {
size_t col_size = size();
column_match_offsets_size(col_size, replicate_offsets.size());
MutableColumnPtr res = clone_empty();
ColumnArray& res_concrete = assert_cast<ColumnArray&>(*res);
if (0 == col_size) return res;
Offset64 prev_offset = 0;
for (size_t i = 0; i < col_size; ++i) {
size_t size_to_replicate = replicate_offsets[i] - prev_offset;
prev_offset = replicate_offsets[i];
for (size_t j = 0; j < size_to_replicate; ++j) {
res_concrete.insert_from(*this, i);
}
}
return res;
}
ColumnPtr ColumnArray::replicate_nullable(const IColumn::Offsets& replicate_offsets) const {
const ColumnNullable& nullable = assert_cast<const ColumnNullable&>(*data);
/// Make temporary arrays for each components of Nullable. Then replicate them independently and collect back to result.
/// NOTE Offsets are calculated twice and it is redundant.
auto array_of_nested = ColumnArray(nullable.get_nested_column_ptr()->assume_mutable(),
get_offsets_ptr()->assume_mutable())
.replicate(replicate_offsets);
auto array_of_null_map = ColumnArray(nullable.get_null_map_column_ptr()->assume_mutable(),
get_offsets_ptr()->assume_mutable())
.replicate(replicate_offsets);
return ColumnArray::create(
ColumnNullable::create(
assert_cast<const ColumnArray&>(*array_of_nested).get_data_ptr(),
assert_cast<const ColumnArray&>(*array_of_null_map).get_data_ptr()),
assert_cast<const ColumnArray&>(*array_of_nested).get_offsets_ptr());
}
ColumnPtr ColumnArray::permute(const Permutation& perm, size_t limit) const {
size_t size = offsets->size();
if (limit == 0) {
limit = size;
} else {
limit = std::min(size, limit);
}
if (perm.size() < limit) {
LOG(FATAL) << "Size of permutation is less than required.";
}
if (limit == 0) {
return ColumnArray::create(data);
}
auto res = ColumnArray::create(data->clone_empty());
auto& res_offsets = res->get_offsets();
res_offsets.resize(limit);
Permutation nested_perm;
nested_perm.reserve(data->size());
for (size_t i = 0; i < limit; ++i) {
res_offsets[i] = res_offsets[i - 1] + size_at(perm[i]);
for (size_t j = 0; j < size_at(perm[i]); ++j) {
nested_perm.push_back(offset_at(perm[i]) + j);
}
}
if (nested_perm.size() != 0) {
res->data = data->permute(nested_perm, nested_perm.size());
}
return res;
}
} // namespace doris::vectorized