blob: 98315609865de02e1a13d58892a18f987b67753d [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "common/daemon.h"
// IWYU pragma: no_include <bthread/errno.h>
#include <errno.h> // IWYU pragma: keep
#include <gflags/gflags.h>
#include <gperftools/malloc_extension.h> // IWYU pragma: keep
// IWYU pragma: no_include <bits/std_abs.h>
#include <butil/iobuf.h>
#include <math.h>
#include <signal.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
// IWYU pragma: no_include <bits/chrono.h>
#include <chrono> // IWYU pragma: keep
#include <map>
#include <ostream>
#include <set>
#include <string>
#include "common/config.h"
#include "common/logging.h"
#include "common/status.h"
#include "olap/options.h"
#include "olap/storage_engine.h"
#include "olap/tablet_manager.h"
#include "runtime/block_spill_manager.h"
#include "runtime/client_cache.h"
#include "runtime/exec_env.h"
#include "runtime/fragment_mgr.h"
#include "runtime/load_channel_mgr.h"
#include "runtime/memory/mem_tracker.h"
#include "runtime/memory/mem_tracker_limiter.h"
#include "runtime/runtime_query_statistics_mgr.h"
#include "runtime/task_group/task_group_manager.h"
#include "runtime/user_function_cache.h"
#include "service/backend_options.h"
#include "util/cpu_info.h"
#include "util/debug_util.h"
#include "util/disk_info.h"
#include "util/doris_metrics.h"
#include "util/mem_info.h"
#include "util/metrics.h"
#include "util/network_util.h"
#include "util/perf_counters.h"
#include "util/system_metrics.h"
#include "util/thrift_util.h"
#include "util/time.h"
namespace doris {
void Daemon::tcmalloc_gc_thread() {
// TODO All cache GC wish to be supported
#if !defined(ADDRESS_SANITIZER) && !defined(LEAK_SANITIZER) && !defined(THREAD_SANITIZER) && \
!defined(USE_JEMALLOC)
// Limit size of tcmalloc cache via release_rate and max_cache_percent.
// We adjust release_rate according to memory_pressure, which is usage percent of memory.
int64_t max_cache_percent = 60;
double release_rates[10] = {1.0, 1.0, 1.0, 5.0, 5.0, 20.0, 50.0, 100.0, 500.0, 2000.0};
int64_t pressure_limit = 90;
bool is_performance_mode = false;
int64_t physical_limit_bytes =
std::min(MemInfo::physical_mem() - MemInfo::sys_mem_available_low_water_mark(),
MemInfo::mem_limit());
if (config::memory_mode == std::string("performance")) {
max_cache_percent = 100;
pressure_limit = 90;
is_performance_mode = true;
physical_limit_bytes = std::min(MemInfo::mem_limit(), MemInfo::physical_mem());
} else if (config::memory_mode == std::string("compact")) {
max_cache_percent = 20;
pressure_limit = 80;
}
int last_ms = 0;
const int kMaxLastMs = 30000;
const int kIntervalMs = 10;
size_t init_aggressive_decommit = 0;
size_t current_aggressive_decommit = 0;
size_t expected_aggressive_decommit = 0;
int64_t last_memory_pressure = 0;
MallocExtension::instance()->GetNumericProperty("tcmalloc.aggressive_memory_decommit",
&init_aggressive_decommit);
current_aggressive_decommit = init_aggressive_decommit;
while (!_stop_background_threads_latch.wait_for(std::chrono::milliseconds(kIntervalMs))) {
size_t tc_used_bytes = 0;
size_t tc_alloc_bytes = 0;
size_t rss = PerfCounters::get_vm_rss();
MallocExtension::instance()->GetNumericProperty("generic.total_physical_bytes",
&tc_alloc_bytes);
MallocExtension::instance()->GetNumericProperty("generic.current_allocated_bytes",
&tc_used_bytes);
int64_t tc_cached_bytes = (int64_t)tc_alloc_bytes - (int64_t)tc_used_bytes;
int64_t to_free_bytes =
(int64_t)tc_cached_bytes - ((int64_t)tc_used_bytes * max_cache_percent / 100);
to_free_bytes = std::max(to_free_bytes, (int64_t)0);
int64_t memory_pressure = 0;
int64_t rss_pressure = 0;
int64_t alloc_bytes = std::max(rss, tc_alloc_bytes);
memory_pressure = alloc_bytes * 100 / physical_limit_bytes;
rss_pressure = rss * 100 / physical_limit_bytes;
expected_aggressive_decommit = init_aggressive_decommit;
if (memory_pressure > pressure_limit) {
// We are reaching oom, so release cache aggressively.
// Ideally, we should reuse cache and not allocate from system any more,
// however, it is hard to set limit on cache of tcmalloc and doris
// use mmap in vectorized mode.
// Limit cache capactiy is enough.
if (rss_pressure > pressure_limit) {
int64_t min_free_bytes = alloc_bytes - physical_limit_bytes * 9 / 10;
to_free_bytes = std::max(to_free_bytes, min_free_bytes);
to_free_bytes = std::max(to_free_bytes, tc_cached_bytes * 30 / 100);
// We assure that we have at least 500M bytes in cache.
to_free_bytes = std::min(to_free_bytes, tc_cached_bytes - 500 * 1024 * 1024);
expected_aggressive_decommit = 1;
}
last_ms = kMaxLastMs;
} else if (memory_pressure > (pressure_limit - 10)) {
// In most cases, adjusting release rate is enough, if memory are consumed quickly
// we should release manually.
if (last_memory_pressure <= (pressure_limit - 10)) {
to_free_bytes = std::max(to_free_bytes, tc_cached_bytes * 10 / 100);
}
}
int release_rate_index = memory_pressure / 10;
double release_rate = 1.0;
if (release_rate_index >= sizeof(release_rates) / sizeof(release_rates[0])) {
release_rate = 2000.0;
} else {
release_rate = release_rates[release_rate_index];
}
MallocExtension::instance()->SetMemoryReleaseRate(release_rate);
if ((current_aggressive_decommit != expected_aggressive_decommit) && !is_performance_mode) {
MallocExtension::instance()->SetNumericProperty("tcmalloc.aggressive_memory_decommit",
expected_aggressive_decommit);
current_aggressive_decommit = expected_aggressive_decommit;
}
last_memory_pressure = memory_pressure;
// We release at least 2% bytes once, frequent releasing hurts performance.
if (to_free_bytes > (physical_limit_bytes * 2 / 100)) {
last_ms += kIntervalMs;
if (last_ms >= kMaxLastMs) {
LOG(INFO) << "generic.current_allocated_bytes " << tc_used_bytes
<< ", generic.total_physical_bytes " << tc_alloc_bytes << ", rss " << rss
<< ", max_cache_percent " << max_cache_percent << ", release_rate "
<< release_rate << ", memory_pressure " << memory_pressure
<< ", physical_limit_bytes " << physical_limit_bytes << ", to_free_bytes "
<< to_free_bytes << ", current_aggressive_decommit "
<< current_aggressive_decommit;
MallocExtension::instance()->ReleaseToSystem(to_free_bytes);
last_ms = 0;
}
} else {
last_ms = 0;
}
}
#endif
}
void Daemon::memory_maintenance_thread() {
int32_t interval_milliseconds = config::memory_maintenance_sleep_time_ms;
int64_t last_print_proc_mem = PerfCounters::get_vm_rss();
while (!_stop_background_threads_latch.wait_for(
std::chrono::milliseconds(interval_milliseconds)) &&
!k_doris_exit) {
if (!MemInfo::initialized() || !ExecEnv::GetInstance()->initialized()) {
continue;
}
// Refresh process memory metrics.
doris::PerfCounters::refresh_proc_status();
doris::MemInfo::refresh_proc_meminfo();
doris::MemInfo::refresh_proc_mem_no_allocator_cache();
// Update and print memory stat when the memory changes by 256M.
if (abs(last_print_proc_mem - PerfCounters::get_vm_rss()) > 268435456 && !k_doris_exit) {
last_print_proc_mem = PerfCounters::get_vm_rss();
doris::MemTrackerLimiter::enable_print_log_process_usage();
// Refresh mem tracker each type counter.
doris::MemTrackerLimiter::refresh_global_counter();
// Refresh allocator memory metrics.
#if !defined(ADDRESS_SANITIZER) && !defined(LEAK_SANITIZER) && !defined(THREAD_SANITIZER)
doris::MemInfo::refresh_allocator_mem();
if (config::enable_system_metrics) {
DorisMetrics::instance()->system_metrics()->update_allocator_metrics();
}
#endif
ExecEnv::GetInstance()->brpc_iobuf_block_memory_tracker()->set_consumption(
butil::IOBuf::block_memory());
LOG(INFO) << MemTrackerLimiter::
process_mem_log_str(); // print mem log when memory state by 256M
}
}
}
void Daemon::memory_gc_thread() {
int32_t interval_milliseconds = config::memory_maintenance_sleep_time_ms;
int32_t memory_minor_gc_sleep_time_ms = 0;
int32_t memory_full_gc_sleep_time_ms = 0;
int32_t memory_gc_sleep_time_ms = config::memory_gc_sleep_time_ms;
while (!_stop_background_threads_latch.wait_for(
std::chrono::milliseconds(interval_milliseconds)) &&
!k_doris_exit) {
if (config::disable_memory_gc || !MemInfo::initialized() ||
!ExecEnv::GetInstance()->initialized()) {
continue;
}
auto sys_mem_available = doris::MemInfo::sys_mem_available();
auto proc_mem_no_allocator_cache = doris::MemInfo::proc_mem_no_allocator_cache();
// GC excess memory for resource groups that not enable overcommit
auto tg_free_mem = doris::MemInfo::tg_not_enable_overcommit_group_gc();
sys_mem_available += tg_free_mem;
proc_mem_no_allocator_cache -= tg_free_mem;
if (memory_full_gc_sleep_time_ms <= 0 &&
(sys_mem_available < doris::MemInfo::sys_mem_available_low_water_mark() ||
proc_mem_no_allocator_cache >= doris::MemInfo::mem_limit())) {
// No longer full gc and minor gc during sleep.
memory_full_gc_sleep_time_ms = memory_gc_sleep_time_ms;
memory_minor_gc_sleep_time_ms = memory_gc_sleep_time_ms;
LOG(INFO) << fmt::format("[MemoryGC] start full GC, {}.",
MemTrackerLimiter::process_limit_exceeded_errmsg_str());
doris::MemTrackerLimiter::print_log_process_usage();
if (doris::MemInfo::process_full_gc()) {
// If there is not enough memory to be gc, the process memory usage will not be printed in the next continuous gc.
doris::MemTrackerLimiter::enable_print_log_process_usage();
}
} else if (memory_minor_gc_sleep_time_ms <= 0 &&
(sys_mem_available < doris::MemInfo::sys_mem_available_warning_water_mark() ||
proc_mem_no_allocator_cache >= doris::MemInfo::soft_mem_limit())) {
// No minor gc during sleep, but full gc is possible.
memory_minor_gc_sleep_time_ms = memory_gc_sleep_time_ms;
LOG(INFO) << fmt::format("[MemoryGC] start minor GC, {}.",
MemTrackerLimiter::process_soft_limit_exceeded_errmsg_str());
doris::MemTrackerLimiter::print_log_process_usage();
if (doris::MemInfo::process_minor_gc()) {
doris::MemTrackerLimiter::enable_print_log_process_usage();
}
} else {
if (memory_full_gc_sleep_time_ms > 0) {
memory_full_gc_sleep_time_ms -= interval_milliseconds;
}
if (memory_minor_gc_sleep_time_ms > 0) {
memory_minor_gc_sleep_time_ms -= interval_milliseconds;
}
}
}
}
void Daemon::load_channel_tracker_refresh_thread() {
// Refresh the memory statistics of the load channel tracker more frequently,
// which helps to accurately control the memory of LoadChannelMgr.
while (!_stop_background_threads_latch.wait_for(
std::chrono::milliseconds(config::load_channel_memory_refresh_sleep_time_ms)) &&
!k_doris_exit) {
if (ExecEnv::GetInstance()->initialized()) {
doris::ExecEnv::GetInstance()->load_channel_mgr()->refresh_mem_tracker();
}
}
}
/*
* this thread will calculate some metrics at a fix interval(15 sec)
* 1. push bytes per second
* 2. scan bytes per second
* 3. max io util of all disks
* 4. max network send bytes rate
* 5. max network receive bytes rate
*/
void Daemon::calculate_metrics_thread() {
int64_t last_ts = -1L;
int64_t lst_query_bytes = -1;
std::map<std::string, int64_t> lst_disks_io_time;
std::map<std::string, int64_t> lst_net_send_bytes;
std::map<std::string, int64_t> lst_net_receive_bytes;
do {
if (!ExecEnv::GetInstance()->initialized()) {
continue;
}
DorisMetrics::instance()->metric_registry()->trigger_all_hooks(true);
if (last_ts == -1L) {
last_ts = GetMonoTimeMicros() / 1000;
lst_query_bytes = DorisMetrics::instance()->query_scan_bytes->value();
if (config::enable_system_metrics) {
DorisMetrics::instance()->system_metrics()->get_disks_io_time(&lst_disks_io_time);
DorisMetrics::instance()->system_metrics()->get_network_traffic(
&lst_net_send_bytes, &lst_net_receive_bytes);
}
} else {
int64_t current_ts = GetMonoTimeMicros() / 1000;
long interval = (current_ts - last_ts) / 1000;
last_ts = current_ts;
// 1. query bytes per second
int64_t current_query_bytes = DorisMetrics::instance()->query_scan_bytes->value();
int64_t qps = (current_query_bytes - lst_query_bytes) / (interval + 1);
DorisMetrics::instance()->query_scan_bytes_per_second->set_value(qps < 0 ? 0 : qps);
lst_query_bytes = current_query_bytes;
if (config::enable_system_metrics) {
// 2. max disk io util
DorisMetrics::instance()->system_metrics()->update_max_disk_io_util_percent(
lst_disks_io_time, 15);
// update lst map
DorisMetrics::instance()->system_metrics()->get_disks_io_time(&lst_disks_io_time);
// 3. max network traffic
int64_t max_send = 0;
int64_t max_receive = 0;
DorisMetrics::instance()->system_metrics()->get_max_net_traffic(
lst_net_send_bytes, lst_net_receive_bytes, 15, &max_send, &max_receive);
DorisMetrics::instance()->system_metrics()->update_max_network_send_bytes_rate(
max_send);
DorisMetrics::instance()->system_metrics()->update_max_network_receive_bytes_rate(
max_receive);
// update lst map
DorisMetrics::instance()->system_metrics()->get_network_traffic(
&lst_net_send_bytes, &lst_net_receive_bytes);
}
DorisMetrics::instance()->all_rowsets_num->set_value(
StorageEngine::instance()->tablet_manager()->get_rowset_nums());
DorisMetrics::instance()->all_segments_num->set_value(
StorageEngine::instance()->tablet_manager()->get_segment_nums());
}
} while (!_stop_background_threads_latch.wait_for(std::chrono::seconds(15)) && !k_doris_exit);
}
// clean up stale spilled files
void Daemon::block_spill_gc_thread() {
while (!_stop_background_threads_latch.wait_for(std::chrono::seconds(60)) && !k_doris_exit) {
if (ExecEnv::GetInstance()->initialized()) {
ExecEnv::GetInstance()->block_spill_mgr()->gc(200);
}
}
}
void Daemon::query_runtime_statistics_thread() {
while (!_stop_background_threads_latch.wait_for(
std::chrono::milliseconds(config::report_query_statistics_interval_ms)) &&
!k_doris_exit) {
if (ExecEnv::GetInstance()->initialized()) {
ExecEnv::GetInstance()
->runtime_query_statistics_mgr()
->report_runtime_query_statistics();
}
}
}
static void init_doris_metrics(const std::vector<StorePath>& store_paths) {
bool init_system_metrics = config::enable_system_metrics;
std::set<std::string> disk_devices;
std::vector<std::string> network_interfaces;
std::vector<std::string> paths;
for (auto& store_path : store_paths) {
paths.emplace_back(store_path.path);
}
if (init_system_metrics) {
auto st = DiskInfo::get_disk_devices(paths, &disk_devices);
if (!st.ok()) {
LOG(WARNING) << "get disk devices failed, status=" << st;
return;
}
st = get_inet_interfaces(&network_interfaces, BackendOptions::is_bind_ipv6());
if (!st.ok()) {
LOG(WARNING) << "get inet interfaces failed, status=" << st;
return;
}
}
DorisMetrics::instance()->initialize(init_system_metrics, disk_devices, network_interfaces);
}
void signal_handler(int signal) {
if (signal == SIGINT || signal == SIGTERM) {
k_doris_exit = true;
k_doris_start = false;
LOG(INFO) << "doris start to exit";
}
}
int install_signal(int signo, void (*handler)(int)) {
struct sigaction sa;
memset(&sa, 0, sizeof(struct sigaction));
sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
auto ret = sigaction(signo, &sa, nullptr);
if (ret != 0) {
char buf[64];
LOG(ERROR) << "install signal failed, signo=" << signo << ", errno=" << errno
<< ", errmsg=" << strerror_r(errno, buf, sizeof(buf));
}
return ret;
}
void init_signals() {
auto ret = install_signal(SIGINT, signal_handler);
if (ret < 0) {
exit(-1);
}
ret = install_signal(SIGTERM, signal_handler);
if (ret < 0) {
exit(-1);
}
}
void Daemon::init(int argc, char** argv, const std::vector<StorePath>& paths) {
// google::SetVersionString(get_build_version(false));
// google::ParseCommandLineFlags(&argc, &argv, true);
google::ParseCommandLineFlags(&argc, &argv, true);
init_glog("be");
LOG(INFO) << get_version_string(false);
init_thrift_logging();
CpuInfo::init();
DiskInfo::init();
MemInfo::init();
UserFunctionCache::instance()->init(config::user_function_dir);
LOG(INFO) << CpuInfo::debug_string();
LOG(INFO) << DiskInfo::debug_string();
LOG(INFO) << MemInfo::debug_string();
init_doris_metrics(paths);
init_signals();
}
void Daemon::start() {
Status st;
st = Thread::create(
"Daemon", "tcmalloc_gc_thread", [this]() { this->tcmalloc_gc_thread(); },
&_tcmalloc_gc_thread);
CHECK(st.ok()) << st;
st = Thread::create(
"Daemon", "memory_maintenance_thread", [this]() { this->memory_maintenance_thread(); },
&_memory_maintenance_thread);
CHECK(st.ok()) << st;
st = Thread::create(
"Daemon", "memory_gc_thread", [this]() { this->memory_gc_thread(); },
&_memory_gc_thread);
CHECK(st.ok()) << st;
st = Thread::create(
"Daemon", "load_channel_tracker_refresh_thread",
[this]() { this->load_channel_tracker_refresh_thread(); },
&_load_channel_tracker_refresh_thread);
CHECK(st.ok()) << st;
if (config::enable_metric_calculator) {
st = Thread::create(
"Daemon", "calculate_metrics_thread",
[this]() { this->calculate_metrics_thread(); }, &_calculate_metrics_thread);
CHECK(st.ok()) << st;
}
st = Thread::create(
"Daemon", "block_spill_gc_thread", [this]() { this->block_spill_gc_thread(); },
&_block_spill_gc_thread);
st = Thread::create(
"Daemon", "query_runtime_statistics_thread",
[this]() { this->query_runtime_statistics_thread(); },
&_query_runtime_statistics_thread);
CHECK(st.ok()) << st;
}
void Daemon::stop() {
_stop_background_threads_latch.count_down();
if (_tcmalloc_gc_thread) {
_tcmalloc_gc_thread->join();
}
if (_memory_maintenance_thread) {
_memory_maintenance_thread->join();
}
if (_memory_gc_thread) {
_memory_gc_thread->join();
}
if (_load_channel_tracker_refresh_thread) {
_load_channel_tracker_refresh_thread->join();
}
if (_calculate_metrics_thread) {
_calculate_metrics_thread->join();
}
if (_block_spill_gc_thread) {
_block_spill_gc_thread->join();
}
if (_query_runtime_statistics_thread) {
_query_runtime_statistics_thread->join();
}
}
} // namespace doris