blob: bf53ec22eda0b1f40d1fd33b946e256bb9c97e3c [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "olap/null_predicate.h"
#include <google/protobuf/stubs/common.h>
#include <gtest/gtest.h>
#include <time.h>
#include "olap/column_predicate.h"
#include "olap/field.h"
#include "olap/row_block2.h"
#include "runtime/mem_pool.h"
#include "runtime/string_value.hpp"
#include "runtime/vectorized_row_batch.h"
#include "util/logging.h"
namespace doris {
namespace datetime {
static uint24_t to_date_timestamp(const char* date_string) {
tm time_tm;
strptime(date_string, "%Y-%m-%d", &time_tm);
int value = (time_tm.tm_year + 1900) * 16 * 32 + (time_tm.tm_mon + 1) * 32 + time_tm.tm_mday;
return uint24_t(value);
}
static uint64_t to_datetime_timestamp(const std::string& value_string) {
tm time_tm;
strptime(value_string.c_str(), "%Y-%m-%d %H:%M:%S", &time_tm);
uint64_t value =
((time_tm.tm_year + 1900) * 10000L + (time_tm.tm_mon + 1) * 100L + time_tm.tm_mday) *
1000000L +
time_tm.tm_hour * 10000L + time_tm.tm_min * 100L + time_tm.tm_sec;
return value;
}
}; // namespace datetime
class TestNullPredicate : public testing::Test {
public:
TestNullPredicate() : _vectorized_batch(nullptr), _row_block(nullptr) {
_mem_tracker.reset(new MemTracker(-1));
_mem_pool.reset(new MemPool(_mem_tracker.get()));
}
~TestNullPredicate() {
if (_vectorized_batch != nullptr) {
delete _vectorized_batch;
}
}
void SetTabletSchema(std::string name, std::string type, std::string aggregation,
uint32_t length, bool is_allow_null, bool is_key,
TabletSchema* tablet_schema) {
TabletSchemaPB tablet_schema_pb;
static int id = 0;
ColumnPB* column = tablet_schema_pb.add_column();
;
column->set_unique_id(++id);
column->set_name(name);
column->set_type(type);
column->set_is_key(is_key);
column->set_is_nullable(is_allow_null);
column->set_length(length);
column->set_aggregation(aggregation);
column->set_precision(1000);
column->set_frac(1000);
column->set_is_bf_column(false);
tablet_schema->init_from_pb(tablet_schema_pb);
}
void InitVectorizedBatch(const TabletSchema* tablet_schema, const std::vector<uint32_t>& ids,
int size) {
_vectorized_batch = new VectorizedRowBatch(tablet_schema, ids, size);
_vectorized_batch->set_size(size);
}
void init_row_block(const TabletSchema* tablet_schema, int size) {
Schema schema(*tablet_schema);
_row_block.reset(new RowBlockV2(schema, size));
}
std::shared_ptr<MemTracker> _mem_tracker;
std::unique_ptr<MemPool> _mem_pool;
VectorizedRowBatch* _vectorized_batch;
std::unique_ptr<RowBlockV2> _row_block;
};
#define TEST_IN_LIST_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \
TEST_F(TestNullPredicate, TYPE_NAME##_COLUMN) { \
TabletSchema tablet_schema; \
SetTabletSchema(std::string("TYPE_NAME##_COLUMN"), FIELD_TYPE, "REPLACE", 1, true, true, \
&tablet_schema); \
int size = 10; \
std::vector<uint32_t> return_columns; \
for (int i = 0; i < tablet_schema.num_columns(); ++i) { \
return_columns.push_back(i); \
} \
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true)); \
\
/* for VectorizedBatch nulls */ \
InitVectorizedBatch(&tablet_schema, return_columns, size); \
init_row_block(&tablet_schema, size); \
ColumnVector* col_vector = _vectorized_batch->column(0); \
col_vector->set_no_nulls(true); \
TYPE* col_data = reinterpret_cast<TYPE*>(_mem_pool->allocate(size * sizeof(TYPE))); \
col_vector->set_col_data(col_data); \
for (int i = 0; i < size; ++i) { \
*(col_data + i) = i; \
} \
pred->evaluate(_vectorized_batch); \
ASSERT_EQ(_vectorized_batch->size(), 0); \
\
/* for ColumnBlock nulls */ \
init_row_block(&tablet_schema, size); \
ColumnBlock col_block = _row_block->column_block(0); \
auto select_size = _row_block->selected_size(); \
ColumnBlockView col_block_view(&col_block); \
for (int i = 0; i < size; ++i, col_block_view.advance(1)) { \
col_block_view.set_null_bits(1, false); \
*reinterpret_cast<TYPE*>(col_block_view.data()) = i; \
} \
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size); \
ASSERT_EQ(select_size, 0); \
\
/* for has nulls */ \
col_vector->set_no_nulls(false); \
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size)); \
memset(is_null, 0, size); \
col_vector->set_is_null(is_null); \
for (int i = 0; i < size; ++i) { \
if (i % 2 == 0) { \
is_null[i] = true; \
} else { \
*(col_data + i) = i; \
} \
} \
_vectorized_batch->set_size(size); \
_vectorized_batch->set_selected_in_use(false); \
pred->evaluate(_vectorized_batch); \
ASSERT_EQ(_vectorized_batch->size(), 5); \
\
/* for ColumnBlock has nulls */ \
col_block_view = ColumnBlockView(&col_block); \
for (int i = 0; i < size; ++i, col_block_view.advance(1)) { \
if (i % 2 == 0) { \
col_block_view.set_null_bits(1, true); \
} else { \
col_block_view.set_null_bits(1, false); \
*reinterpret_cast<TYPE*>(col_block_view.data()) = i; \
} \
} \
_row_block->clear(); \
select_size = _row_block->selected_size(); \
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size); \
ASSERT_EQ(select_size, 5); \
pred.reset(); \
}
TEST_IN_LIST_PREDICATE(int8_t, TINYINT, "TINYINT")
TEST_IN_LIST_PREDICATE(int16_t, SMALLINT, "SMALLINT")
TEST_IN_LIST_PREDICATE(int32_t, INT, "INT")
TEST_IN_LIST_PREDICATE(int64_t, BIGINT, "BIGINT")
TEST_IN_LIST_PREDICATE(int128_t, LARGEINT, "LARGEINT")
TEST_F(TestNullPredicate, FLOAT_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT", "REPLACE", 1, true, true, &tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true));
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
float* col_data = reinterpret_cast<float*>(_mem_pool->allocate(size * sizeof(float)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
*(col_data + i) = i + 0.1;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 0);
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<float*>(col_block_view.data()) = i + 0.1;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
*(col_data + i) = i + 0.1;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 5);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<float*>(col_block_view.data()) = i + 0.1;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 5);
}
TEST_F(TestNullPredicate, DOUBLE_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true));
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
double* col_data = reinterpret_cast<double*>(_mem_pool->allocate(size * sizeof(double)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
*(col_data + i) = i + 0.1;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 0);
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<double*>(col_block_view.data()) = i + 0.1;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
*(col_data + i) = i + 0.1;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 5);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<double*>(col_block_view.data()) = i + 0.1;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 5);
}
TEST_F(TestNullPredicate, DECIMAL_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true));
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
decimal12_t* col_data =
reinterpret_cast<decimal12_t*>(_mem_pool->allocate(size * sizeof(decimal12_t)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
(*(col_data + i)).integer = i;
(*(col_data + i)).fraction = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 0);
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
reinterpret_cast<decimal12_t*>(col_block_view.data())->integer = i;
reinterpret_cast<decimal12_t*>(col_block_view.data())->fraction = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 3 == 0) {
is_null[i] = true;
} else {
(*(col_data + i)).integer = i;
(*(col_data + i)).fraction = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 4);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 3 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
reinterpret_cast<decimal12_t*>(col_block_view.data())->integer = i;
reinterpret_cast<decimal12_t*>(col_block_view.data())->fraction = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 4);
}
TEST_F(TestNullPredicate, STRING_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true));
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
StringValue* col_data =
reinterpret_cast<StringValue*>(_mem_pool->allocate(size * sizeof(StringValue)));
col_vector->set_col_data(col_data);
char* string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i) {
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
(*(col_data + i)).len = i + 1;
(*(col_data + i)).ptr = string_buffer;
string_buffer += i + 1;
}
ASSERT_EQ(_vectorized_batch->size(), 10);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 0);
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
reinterpret_cast<StringValue*>(col_block_view.data())->len = i + 1;
reinterpret_cast<StringValue*>(col_block_view.data())->ptr = string_buffer;
string_buffer += i + 1;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i) {
if (i % 3 == 0) {
is_null[i] = true;
} else {
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
(*(col_data + i)).len = i + 1;
(*(col_data + i)).ptr = string_buffer;
}
string_buffer += i + 1;
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 4);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 3 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
reinterpret_cast<StringValue*>(col_block_view.data())->len = i + 1;
reinterpret_cast<StringValue*>(col_block_view.data())->ptr = string_buffer;
string_buffer += i + 1;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 4);
}
TEST_F(TestNullPredicate, DATE_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DATE_COLUMN"), "DATE", "REPLACE", 1, true, true, &tablet_schema);
int size = 6;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true));
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
uint24_t* col_data = reinterpret_cast<uint24_t*>(_mem_pool->allocate(size * sizeof(uint24_t)));
col_vector->set_col_data(col_data);
std::vector<std::string> date_array;
date_array.push_back("2017-09-07");
date_array.push_back("2017-09-08");
date_array.push_back("2017-09-09");
date_array.push_back("2017-09-10");
date_array.push_back("2017-09-11");
date_array.push_back("2017-09-12");
for (int i = 0; i < size; ++i) {
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 0);
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint24_t*>(col_block_view.data()) = timestamp;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 3 == 0) {
is_null[i] = true;
} else {
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 2);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 3 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint24_t*>(col_block_view.data()) = timestamp;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 2);
}
TEST_F(TestNullPredicate, DATETIME_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME", "REPLACE", 1, true, true,
&tablet_schema);
int size = 6;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
std::unique_ptr<ColumnPredicate> pred(new NullPredicate(0, true));
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
uint64_t* col_data = reinterpret_cast<uint64_t*>(_mem_pool->allocate(size * sizeof(uint64_t)));
col_vector->set_col_data(col_data);
std::vector<std::string> date_array;
date_array.push_back("2017-09-07 00:00:00");
date_array.push_back("2017-09-08 00:01:00");
date_array.push_back("2017-09-09 00:00:01");
date_array.push_back("2017-09-10 01:00:00");
date_array.push_back("2017-09-11 01:01:00");
date_array.push_back("2017-09-12 01:01:01");
for (int i = 0; i < size; ++i) {
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 0);
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
uint64_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint64_t*>(col_block_view.data()) = timestamp;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 3 == 0) {
is_null[i] = true;
} else {
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 2);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 3 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
uint64_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint64_t*>(col_block_view.data()) = timestamp;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 2);
}
} // namespace doris
int main(int argc, char** argv) {
std::string conffile = std::string(getenv("DORIS_HOME")) + "/conf/be.conf";
if (!doris::config::init(conffile.c_str(), false)) {
fprintf(stderr, "error read config file. \n");
return -1;
}
doris::init_glog("be-test");
int ret = doris::OLAP_SUCCESS;
testing::InitGoogleTest(&argc, argv);
doris::CpuInfo::init();
ret = RUN_ALL_TESTS();
google::protobuf::ShutdownProtobufLibrary();
return ret;
}