blob: 7ba3d70012f4e75732410ca5e710eaacac0ad312 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "olap/comparison_predicate.h"
#include <google/protobuf/stubs/common.h>
#include <gtest/gtest.h>
#include <time.h>
#include "olap/column_predicate.h"
#include "olap/field.h"
#include "olap/row_block2.h"
#include "olap/wrapper_field.h"
#include "runtime/mem_pool.h"
#include "runtime/string_value.hpp"
#include "runtime/vectorized_row_batch.h"
#include "util/logging.h"
namespace doris {
namespace datetime {
static uint24_t to_date_timestamp(const char* date_string) {
tm time_tm;
strptime(date_string, "%Y-%m-%d", &time_tm);
int value = (time_tm.tm_year + 1900) * 16 * 32 + (time_tm.tm_mon + 1) * 32 + time_tm.tm_mday;
return uint24_t(value);
}
static uint64_t to_datetime_timestamp(const std::string& value_string) {
tm time_tm;
strptime(value_string.c_str(), "%Y-%m-%d %H:%M:%S", &time_tm);
uint64_t value =
((time_tm.tm_year + 1900) * 10000L + (time_tm.tm_mon + 1) * 100L + time_tm.tm_mday) *
1000000L +
time_tm.tm_hour * 10000L + time_tm.tm_min * 100L + time_tm.tm_sec;
return value;
}
static std::string to_date_string(uint24_t& date_value) {
tm time_tm;
int value = date_value;
memset(&time_tm, 0, sizeof(time_tm));
time_tm.tm_mday = static_cast<int>(value & 31);
time_tm.tm_mon = static_cast<int>(value >> 5 & 15) - 1;
time_tm.tm_year = static_cast<int>(value >> 9) - 1900;
char buf[20] = {'\0'};
strftime(buf, sizeof(buf), "%Y-%m-%d", &time_tm);
return std::string(buf);
}
static std::string to_datetime_string(uint64_t& datetime_value) {
tm time_tm;
int64_t part1 = (datetime_value / 1000000L);
int64_t part2 = (datetime_value - part1 * 1000000L);
time_tm.tm_year = static_cast<int>((part1 / 10000L) % 10000) - 1900;
time_tm.tm_mon = static_cast<int>((part1 / 100) % 100) - 1;
time_tm.tm_mday = static_cast<int>(part1 % 100);
time_tm.tm_hour = static_cast<int>((part2 / 10000L) % 10000);
time_tm.tm_min = static_cast<int>((part2 / 100) % 100);
time_tm.tm_sec = static_cast<int>(part2 % 100);
char buf[20] = {'\0'};
strftime(buf, 20, "%Y-%m-%d %H:%M:%S", &time_tm);
return std::string(buf);
}
}; // namespace datetime
#define TEST_PREDICATE_DEFINITION(CLASS_NAME) \
class CLASS_NAME : public testing::Test { \
public: \
CLASS_NAME() : _vectorized_batch(NULL) { \
_mem_tracker.reset(new MemTracker(-1)); \
_mem_pool.reset(new MemPool(_mem_tracker.get())); \
} \
~CLASS_NAME() { \
if (_vectorized_batch != NULL) { \
delete _vectorized_batch; \
} \
} \
void SetTabletSchema(std::string name, const std::string& type, \
const std::string& aggregation, uint32_t length, bool is_allow_null, \
bool is_key, TabletSchema* tablet_schema) { \
TabletSchemaPB tablet_schema_pb; \
static int id = 0; \
ColumnPB* column = tablet_schema_pb.add_column(); \
column->set_unique_id(++id); \
column->set_name(name); \
column->set_type(type); \
column->set_is_key(is_key); \
column->set_is_nullable(is_allow_null); \
column->set_length(length); \
column->set_aggregation(aggregation); \
column->set_precision(1000); \
column->set_frac(1000); \
column->set_is_bf_column(false); \
tablet_schema->init_from_pb(tablet_schema_pb); \
} \
void InitVectorizedBatch(const TabletSchema* tablet_schema, \
const std::vector<uint32_t>& ids, int size) { \
_vectorized_batch = new VectorizedRowBatch(tablet_schema, ids, size); \
_vectorized_batch->set_size(size); \
} \
\
void init_row_block(const TabletSchema* tablet_schema, int size) { \
Schema schema(*tablet_schema); \
_row_block.reset(new RowBlockV2(schema, size)); \
} \
std::shared_ptr<MemTracker> _mem_tracker; \
std::unique_ptr<MemPool> _mem_pool; \
VectorizedRowBatch* _vectorized_batch; \
std::unique_ptr<RowBlockV2> _row_block; \
};
TEST_PREDICATE_DEFINITION(TestEqualPredicate)
TEST_PREDICATE_DEFINITION(TestLessPredicate)
#define TEST_EQUAL_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \
TEST_F(TestEqualPredicate, TYPE_NAME##_COLUMN) { \
TabletSchema tablet_schema; \
SetTabletSchema(std::string("TYPE_NAME##_COLUMN"), FIELD_TYPE, "REPLACE", 1, false, true, \
&tablet_schema); \
int size = 10; \
std::vector<uint32_t> return_columns; \
for (int i = 0; i < tablet_schema.num_columns(); ++i) { \
return_columns.push_back(i); \
} \
InitVectorizedBatch(&tablet_schema, return_columns, size); \
ColumnVector* col_vector = _vectorized_batch->column(0); \
\
/* for no nulls */ \
col_vector->set_no_nulls(true); \
TYPE* col_data = reinterpret_cast<TYPE*>(_mem_pool->allocate(size * sizeof(TYPE))); \
col_vector->set_col_data(col_data); \
for (int i = 0; i < size; ++i) { \
*(col_data + i) = i; \
} \
TYPE value = 5; \
ColumnPredicate* pred = new EqualPredicate<TYPE>(0, value); \
pred->evaluate(_vectorized_batch); \
ASSERT_EQ(_vectorized_batch->size(), 1); \
uint16_t* sel = _vectorized_batch->selected(); \
ASSERT_EQ(*(col_data + sel[0]), 5); \
\
/* for has nulls */ \
col_vector->set_no_nulls(false); \
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size)); \
memset(is_null, 0, size); \
col_vector->set_is_null(is_null); \
for (int i = 0; i < size; ++i) { \
if (i % 2 == 0) { \
is_null[i] = true; \
} else { \
*(col_data + i) = i; \
} \
} \
_vectorized_batch->set_size(size); \
_vectorized_batch->set_selected_in_use(false); \
pred->evaluate(_vectorized_batch); \
ASSERT_EQ(_vectorized_batch->size(), 1); \
sel = _vectorized_batch->selected(); \
ASSERT_EQ(*(col_data + sel[0]), 5); \
delete pred; \
}
TEST_EQUAL_PREDICATE(int8_t, TINYINT, "TINYINT")
TEST_EQUAL_PREDICATE(int16_t, SMALLINT, "SMALLINT")
TEST_EQUAL_PREDICATE(int32_t, INT, "INT")
TEST_EQUAL_PREDICATE(int64_t, BIGINT, "BIGINT")
TEST_EQUAL_PREDICATE(int128_t, LARGEINT, "LARGEINT")
TEST_F(TestEqualPredicate, FLOAT_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT", "REPLACE", 1, true, true, &tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
float value = 5.0;
ColumnPredicate* pred = new EqualPredicate<float>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
float* col_data = reinterpret_cast<float*>(_mem_pool->allocate(size * sizeof(float)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
*(col_data + i) = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_FLOAT_EQ(*(col_data + sel[0]), 5.0);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<float*>(col_block_view.data()) = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_FLOAT_EQ(*(float*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), 5.0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
*(col_data + i) = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_FLOAT_EQ(*(col_data + sel[0]), 5.0);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<float*>(col_block_view.data()) = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_FLOAT_EQ(*(float*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), 5.0);
delete pred;
}
TEST_F(TestEqualPredicate, DOUBLE_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
double value = 5.0;
ColumnPredicate* pred = new EqualPredicate<double>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
double* col_data = reinterpret_cast<double*>(_mem_pool->allocate(size * sizeof(double)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
*(col_data + i) = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_DOUBLE_EQ(*(col_data + sel[0]), 5.0);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<double*>(col_block_view.data()) = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_DOUBLE_EQ(*(double*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), 5.0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
*(col_data + i) = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_DOUBLE_EQ(*(col_data + sel[0]), 5.0);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<double*>(col_block_view.data()) = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_DOUBLE_EQ(*(double*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), 5.0);
delete pred;
}
TEST_F(TestEqualPredicate, DECIMAL_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
decimal12_t value(5, 5);
ColumnPredicate* pred = new EqualPredicate<decimal12_t>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
decimal12_t* col_data =
reinterpret_cast<decimal12_t*>(_mem_pool->allocate(size * sizeof(decimal12_t)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
(*(col_data + i)).integer = i;
(*(col_data + i)).fraction = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_EQ(*(col_data + sel[0]), value);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
reinterpret_cast<decimal12_t*>(col_block_view.data())->integer = i;
reinterpret_cast<decimal12_t*>(col_block_view.data())->fraction = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(*(decimal12_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), value);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
(*(col_data + i)).integer = i;
(*(col_data + i)).fraction = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_EQ(*(col_data + sel[0]), value);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
reinterpret_cast<decimal12_t*>(col_block_view.data())->integer = i;
reinterpret_cast<decimal12_t*>(col_block_view.data())->fraction = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(*(decimal12_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), value);
delete pred;
}
TEST_F(TestEqualPredicate, STRING_COLUMN) {
TabletSchema char_tablet_schema;
SetTabletSchema(std::string("STRING_COLUMN"), "CHAR", "REPLACE", 5, true, true,
&char_tablet_schema);
// test WrapperField.from_string() for char type
WrapperField* field = WrapperField::create(char_tablet_schema.column(0));
ASSERT_EQ(OLAP_SUCCESS, field->from_string("true"));
const std::string tmp = field->to_string();
ASSERT_EQ(5, tmp.size());
ASSERT_EQ('t', tmp[0]);
ASSERT_EQ('r', tmp[1]);
ASSERT_EQ('u', tmp[2]);
ASSERT_EQ('e', tmp[3]);
ASSERT_EQ(0, tmp[4]);
TabletSchema tablet_schema;
SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
StringValue value;
const char* value_buffer = "dddd";
value.len = 4;
value.ptr = const_cast<char*>(value_buffer);
ColumnPredicate* pred = new EqualPredicate<StringValue>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
StringValue* col_data =
reinterpret_cast<StringValue*>(_mem_pool->allocate(size * sizeof(StringValue)));
col_vector->set_col_data(col_data);
char* string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i) {
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
(*(col_data + i)).len = i + 1;
(*(col_data + i)).ptr = string_buffer;
string_buffer += i + 1;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_EQ(sel[0], 3);
ASSERT_EQ(*(col_data + sel[0]), value);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(60));
memset(string_buffer, 0, 60);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
reinterpret_cast<StringValue*>(col_block_view.data())->len = i + 1;
reinterpret_cast<StringValue*>(col_block_view.data())->ptr = string_buffer;
string_buffer += i + 1;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(*(StringValue*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), value);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
(*(col_data + i)).len = i + 1;
(*(col_data + i)).ptr = string_buffer;
}
string_buffer += i + 1;
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_EQ(*(col_data + sel[0]), value);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
reinterpret_cast<StringValue*>(col_block_view.data())->len = i + 1;
reinterpret_cast<StringValue*>(col_block_view.data())->ptr = string_buffer;
string_buffer += i + 1;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(*(StringValue*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr(), value);
delete field;
delete pred;
}
TEST_F(TestEqualPredicate, DATE_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DATE_COLUMN"), "DATE", "REPLACE", 1, true, true, &tablet_schema);
int size = 6;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
uint24_t value = datetime::to_date_timestamp("2017-09-10");
ColumnPredicate* pred = new EqualPredicate<uint24_t>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
uint24_t* col_data = reinterpret_cast<uint24_t*>(_mem_pool->allocate(size * sizeof(uint24_t)));
col_vector->set_col_data(col_data);
std::vector<std::string> date_array;
date_array.push_back("2017-09-07");
date_array.push_back("2017-09-08");
date_array.push_back("2017-09-09");
date_array.push_back("2017-09-10");
date_array.push_back("2017-09-11");
date_array.push_back("2017-09-12");
for (int i = 0; i < size; ++i) {
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_EQ(sel[0], 3);
ASSERT_EQ(*(col_data + sel[0]), value);
ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-10");
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint24_t*>(col_block_view.data()) = timestamp;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(datetime::to_date_string(
*(uint24_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-10");
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_EQ(*(col_data + sel[0]), value);
ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-10");
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint24_t*>(col_block_view.data()) = timestamp;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(datetime::to_date_string(
*(uint24_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-10");
delete pred;
}
TEST_F(TestEqualPredicate, DATETIME_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME", "REPLACE", 1, true, true,
&tablet_schema);
int size = 6;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
uint64_t value = datetime::to_datetime_timestamp("2017-09-10 01:00:00");
ColumnPredicate* pred = new EqualPredicate<uint64_t>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
uint64_t* col_data = reinterpret_cast<uint64_t*>(_mem_pool->allocate(size * sizeof(uint64_t)));
col_vector->set_col_data(col_data);
std::vector<std::string> date_array;
date_array.push_back("2017-09-07 00:00:00");
date_array.push_back("2017-09-08 00:01:00");
date_array.push_back("2017-09-09 00:00:01");
date_array.push_back("2017-09-10 01:00:00");
date_array.push_back("2017-09-11 01:01:00");
date_array.push_back("2017-09-12 01:01:01");
for (int i = 0; i < size; ++i) {
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_EQ(sel[0], 3);
ASSERT_EQ(*(col_data + sel[0]), value);
ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-10 01:00:00");
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*reinterpret_cast<uint64_t*>(col_block_view.data()) = timestamp;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(datetime::to_datetime_string(
*(uint64_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-10 01:00:00");
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_EQ(*(col_data + sel[0]), value);
ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-10 01:00:00");
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*reinterpret_cast<uint64_t*>(col_block_view.data()) = timestamp;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(datetime::to_datetime_string(
*(uint64_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-10 01:00:00");
delete pred;
}
#define TEST_LESS_PREDICATE(TYPE, TYPE_NAME, FIELD_TYPE) \
TEST_F(TestLessPredicate, TYPE_NAME##_COLUMN) { \
TabletSchema tablet_schema; \
SetTabletSchema(std::string("TYPE_NAME_COLUMN"), FIELD_TYPE, "REPLACE", 1, false, true, \
&tablet_schema); \
int size = 10; \
std::vector<uint32_t> return_columns; \
for (int i = 0; i < tablet_schema.num_columns(); ++i) { \
return_columns.push_back(i); \
} \
InitVectorizedBatch(&tablet_schema, return_columns, size); \
ColumnVector* col_vector = _vectorized_batch->column(0); \
\
/* for no nulls */ \
col_vector->set_no_nulls(true); \
TYPE* col_data = reinterpret_cast<TYPE*>(_mem_pool->allocate(size * sizeof(TYPE))); \
col_vector->set_col_data(col_data); \
for (int i = 0; i < size; ++i) { \
*(col_data + i) = i; \
} \
TYPE value = 5; \
ColumnPredicate* pred = new LessPredicate<TYPE>(0, value); \
pred->evaluate(_vectorized_batch); \
ASSERT_EQ(_vectorized_batch->size(), 5); \
uint16_t* sel = _vectorized_batch->selected(); \
TYPE sum = 0; \
for (int i = 0; i < _vectorized_batch->size(); ++i) { \
sum += *(col_data + sel[i]); \
} \
ASSERT_EQ(sum, 10); \
\
/* for has nulls */ \
col_vector->set_no_nulls(false); \
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size)); \
memset(is_null, 0, size); \
col_vector->set_is_null(is_null); \
for (int i = 0; i < size; ++i) { \
if (i % 2 == 0) { \
is_null[i] = true; \
} else { \
*(col_data + i) = i; \
} \
} \
_vectorized_batch->set_size(size); \
_vectorized_batch->set_selected_in_use(false); \
pred->evaluate(_vectorized_batch); \
ASSERT_EQ(_vectorized_batch->size(), 2); \
sel = _vectorized_batch->selected(); \
sum = 0; \
for (int i = 0; i < _vectorized_batch->size(); ++i) { \
sum += *(col_data + sel[i]); \
} \
ASSERT_EQ(sum, 4); \
delete pred; \
}
TEST_LESS_PREDICATE(int8_t, TINYINT, "TINYINT")
TEST_LESS_PREDICATE(int16_t, SMALLINT, "SMALLINT")
TEST_LESS_PREDICATE(int32_t, INT, "INT")
TEST_LESS_PREDICATE(int64_t, BIGINT, "BIGINT")
TEST_LESS_PREDICATE(int128_t, LARGEINT, "LARGEINT")
TEST_F(TestLessPredicate, FLOAT_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("FLOAT_COLUMN"), "FLOAT", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
float value = 5.0;
ColumnPredicate* pred = new LessPredicate<float>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
float* col_data = reinterpret_cast<float*>(_mem_pool->allocate(size * sizeof(float)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
*(col_data + i) = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 5);
uint16_t* sel = _vectorized_batch->selected();
float sum = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_FLOAT_EQ(sum, 10.0);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<float*>(col_block_view.data()) = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 5);
sum = 0;
for (int i = 0; i < 5; ++i) {
sum += *(float*)col_block.cell(_row_block->selection_vector()[i]).cell_ptr();
}
ASSERT_FLOAT_EQ(sum, 10.0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
*(col_data + i) = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 2);
sel = _vectorized_batch->selected();
sum = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_FLOAT_EQ(sum, 4.0);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<float*>(col_block_view.data()) = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 2);
sum = 0;
for (int i = 0; i < 2; ++i) {
sum += *(float*)col_block.cell(_row_block->selection_vector()[i]).cell_ptr();
}
ASSERT_FLOAT_EQ(sum, 4.0);
delete pred;
}
TEST_F(TestLessPredicate, DOUBLE_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DOUBLE_COLUMN"), "DOUBLE", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
double value = 5.0;
ColumnPredicate* pred = new LessPredicate<double>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
double* col_data = reinterpret_cast<double*>(_mem_pool->allocate(size * sizeof(double)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
*(col_data + i) = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 5);
uint16_t* sel = _vectorized_batch->selected();
double sum = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_DOUBLE_EQ(sum, 10.0);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<double*>(col_block_view.data()) = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 5);
sum = 0;
for (int i = 0; i < 5; ++i) {
sum += *(double*)col_block.cell(_row_block->selection_vector()[i]).cell_ptr();
}
ASSERT_DOUBLE_EQ(sum, 10.0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
*(col_data + i) = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 2);
sel = _vectorized_batch->selected();
sum = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_DOUBLE_EQ(sum, 4.0);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
*reinterpret_cast<double*>(col_block_view.data()) = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 2);
sum = 0;
for (int i = 0; i < 2; ++i) {
sum += *(double*)col_block.cell(_row_block->selection_vector()[i]).cell_ptr();
}
ASSERT_DOUBLE_EQ(sum, 4.0);
delete pred;
}
TEST_F(TestLessPredicate, DECIMAL_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DECIMAL_COLUMN"), "DECIMAL", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
decimal12_t value(5, 5);
ColumnPredicate* pred = new LessPredicate<decimal12_t>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
decimal12_t* col_data =
reinterpret_cast<decimal12_t*>(_mem_pool->allocate(size * sizeof(decimal12_t)));
col_vector->set_col_data(col_data);
for (int i = 0; i < size; ++i) {
(*(col_data + i)).integer = i;
(*(col_data + i)).fraction = i;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 5);
uint16_t* sel = _vectorized_batch->selected();
decimal12_t sum(0, 0);
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_EQ(sum.integer, 10);
ASSERT_EQ(sum.fraction, 10);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
reinterpret_cast<decimal12_t*>(col_block_view.data())->integer = i;
reinterpret_cast<decimal12_t*>(col_block_view.data())->fraction = i;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 5);
sum.integer = 0;
sum.fraction = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_EQ(sum.integer, 10);
ASSERT_EQ(sum.fraction, 10);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
(*(col_data + i)).integer = i;
(*(col_data + i)).fraction = i;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 2);
sum.integer = 0;
sum.fraction = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_EQ(sum.integer, 4);
ASSERT_EQ(sum.fraction, 4);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
reinterpret_cast<decimal12_t*>(col_block_view.data())->integer = i;
reinterpret_cast<decimal12_t*>(col_block_view.data())->fraction = i;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 2);
sum.integer = 0;
sum.fraction = 0;
for (int i = 0; i < _vectorized_batch->size(); ++i) {
sum += *(col_data + sel[i]);
}
ASSERT_EQ(sum.integer, 4);
ASSERT_EQ(sum.fraction, 4);
delete pred;
}
TEST_F(TestLessPredicate, STRING_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("STRING_COLUMN"), "VARCHAR", "REPLACE", 1, true, true,
&tablet_schema);
int size = 10;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
StringValue value;
const char* value_buffer = "dddd";
value.len = 4;
value.ptr = const_cast<char*>(value_buffer);
ColumnPredicate* pred = new LessPredicate<StringValue>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
StringValue* col_data =
reinterpret_cast<StringValue*>(_mem_pool->allocate(size * sizeof(StringValue)));
col_vector->set_col_data(col_data);
char* string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i) {
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
(*(col_data + i)).len = i + 1;
(*(col_data + i)).ptr = string_buffer;
string_buffer += i + 1;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 3);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_TRUE(strncmp((*(col_data + sel[0])).ptr, "a", 1) == 0);
// for ColumnBlock no null
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(60));
memset(string_buffer, 0, 60);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
reinterpret_cast<StringValue*>(col_block_view.data())->len = i + 1;
reinterpret_cast<StringValue*>(col_block_view.data())->ptr = string_buffer;
string_buffer += i + 1;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 3);
ASSERT_TRUE(
strncmp((*(StringValue*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr())
.ptr,
"a", 1) == 0);
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
(*(col_data + i)).len = i + 1;
(*(col_data + i)).ptr = string_buffer;
}
string_buffer += i + 1;
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_TRUE(strncmp((*(col_data + sel[0])).ptr, "bb", 2) == 0);
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
string_buffer = reinterpret_cast<char*>(_mem_pool->allocate(55));
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
for (int j = 0; j <= i; ++j) {
string_buffer[j] = 'a' + i;
}
reinterpret_cast<StringValue*>(col_block_view.data())->len = i + 1;
reinterpret_cast<StringValue*>(col_block_view.data())->ptr = string_buffer;
string_buffer += i + 1;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_TRUE(
strncmp((*(StringValue*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr())
.ptr,
"bb", 2) == 0);
delete pred;
}
TEST_F(TestLessPredicate, DATE_COLUMN) {
TabletSchema tablet_schema;
SetTabletSchema(std::string("DATE_COLUMN"), "DATE", "REPLACE", 1, true, true, &tablet_schema);
int size = 6;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
uint24_t value = datetime::to_date_timestamp("2017-09-10");
ColumnPredicate* pred = new LessPredicate<uint24_t>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
uint24_t* col_data = reinterpret_cast<uint24_t*>(_mem_pool->allocate(size * sizeof(uint24_t)));
col_vector->set_col_data(col_data);
std::vector<std::string> date_array;
date_array.push_back("2017-09-07");
date_array.push_back("2017-09-08");
date_array.push_back("2017-09-09");
date_array.push_back("2017-09-10");
date_array.push_back("2017-09-11");
date_array.push_back("2017-09-12");
for (int i = 0; i < size; ++i) {
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 3);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-07");
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint24_t*>(col_block_view.data()) = timestamp;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 3);
ASSERT_EQ(datetime::to_date_string(
*(uint24_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-07");
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_EQ(datetime::to_date_string(*(col_data + sel[0])), "2017-09-08");
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
uint24_t timestamp = datetime::to_date_timestamp(date_array[i].c_str());
*reinterpret_cast<uint24_t*>(col_block_view.data()) = timestamp;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(datetime::to_date_string(
*(uint24_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-08");
delete pred;
}
TEST_F(TestLessPredicate, DATETIME_COLUMN) {
TabletSchema tablet_schema;
TabletColumn tablet_column;
SetTabletSchema(std::string("DATETIME_COLUMN"), "DATETIME", "REPLACE", 1, true, true,
&tablet_schema);
int size = 6;
std::vector<uint32_t> return_columns;
for (int i = 0; i < tablet_schema.num_columns(); ++i) {
return_columns.push_back(i);
}
uint64_t value = datetime::to_datetime_timestamp("2017-09-10 01:00:00");
ColumnPredicate* pred = new LessPredicate<uint64_t>(0, value);
// for VectorizedBatch no nulls
InitVectorizedBatch(&tablet_schema, return_columns, size);
ColumnVector* col_vector = _vectorized_batch->column(0);
col_vector->set_no_nulls(true);
uint64_t* col_data = reinterpret_cast<uint64_t*>(_mem_pool->allocate(size * sizeof(uint64_t)));
col_vector->set_col_data(col_data);
std::vector<std::string> date_array;
date_array.push_back("2017-09-07 00:00:00");
date_array.push_back("2017-09-08 00:01:00");
date_array.push_back("2017-09-09 00:00:01");
date_array.push_back("2017-09-10 01:00:00");
date_array.push_back("2017-09-11 01:01:00");
date_array.push_back("2017-09-12 01:01:01");
for (int i = 0; i < size; ++i) {
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 3);
uint16_t* sel = _vectorized_batch->selected();
ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-07 00:00:00");
// for ColumnBlock no nulls
init_row_block(&tablet_schema, size);
ColumnBlock col_block = _row_block->column_block(0);
auto select_size = _row_block->selected_size();
ColumnBlockView col_block_view(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
col_block_view.set_null_bits(1, false);
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*reinterpret_cast<uint64_t*>(col_block_view.data()) = timestamp;
}
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 3);
ASSERT_EQ(datetime::to_datetime_string(
*(uint64_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-07 00:00:00");
// for VectorizedBatch has nulls
col_vector->set_no_nulls(false);
bool* is_null = reinterpret_cast<bool*>(_mem_pool->allocate(size));
memset(is_null, 0, size);
col_vector->set_is_null(is_null);
for (int i = 0; i < size; ++i) {
if (i % 2 == 0) {
is_null[i] = true;
} else {
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*(col_data + i) = timestamp;
}
}
_vectorized_batch->set_size(size);
_vectorized_batch->set_selected_in_use(false);
pred->evaluate(_vectorized_batch);
ASSERT_EQ(_vectorized_batch->size(), 1);
sel = _vectorized_batch->selected();
ASSERT_EQ(datetime::to_datetime_string(*(col_data + sel[0])), "2017-09-08 00:01:00");
// for ColumnBlock has nulls
col_block_view = ColumnBlockView(&col_block);
for (int i = 0; i < size; ++i, col_block_view.advance(1)) {
if (i % 2 == 0) {
col_block_view.set_null_bits(1, true);
} else {
col_block_view.set_null_bits(1, false);
uint64_t timestamp = datetime::to_datetime_timestamp(date_array[i].c_str());
*reinterpret_cast<uint64_t*>(col_block_view.data()) = timestamp;
}
}
_row_block->clear();
select_size = _row_block->selected_size();
pred->evaluate(&col_block, _row_block->selection_vector(), &select_size);
ASSERT_EQ(select_size, 1);
ASSERT_EQ(datetime::to_datetime_string(
*(uint64_t*)col_block.cell(_row_block->selection_vector()[0]).cell_ptr()),
"2017-09-08 00:01:00");
delete pred;
}
} // namespace doris
int main(int argc, char** argv) {
int ret = doris::OLAP_SUCCESS;
testing::InitGoogleTest(&argc, argv);
doris::CpuInfo::init();
ret = RUN_ALL_TESTS();
google::protobuf::ShutdownProtobufLibrary();
return ret;
}