blob: b951b058c7cab040ed5114572007c59e6235762b [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
// author Kevin Lang, Oath Research
#ifndef CPC_COMPRESSOR_IMPL_HPP_
#define CPC_COMPRESSOR_IMPL_HPP_
#include <memory>
#include "compression_data.hpp"
#include "cpc_util.hpp"
#include "cpc_common.hpp"
#include "count_zeros.hpp"
namespace datasketches {
// construct on first use
template<typename A>
cpc_compressor<A>& get_compressor() {
static cpc_compressor<A>* instance = new cpc_compressor<A>(); // use new for global initialization
return *instance;
}
template<typename A>
cpc_compressor<A>::cpc_compressor() {
make_decoding_tables();
}
template<typename A>
cpc_compressor<A>::~cpc_compressor() {
free_decoding_tables();
}
template<typename A>
uint8_t* cpc_compressor<A>::make_inverse_permutation(const uint8_t* permu, int length) {
uint8_t* inverse = new uint8_t[length]; // use new for global initialization
for (int i = 0; i < length; i++) {
inverse[permu[i]] = i;
}
for (int i = 0; i < length; i++) {
if (permu[inverse[i]] != i) throw std::logic_error("inverse permutation error");
}
return inverse;
}
/* Given an encoding table that maps unsigned bytes to codewords
of length at most 12, this builds a size-4096 decoding table */
// The second argument is typically 256, but can be other values such as 65.
template<typename A>
uint16_t* cpc_compressor<A>::make_decoding_table(const uint16_t* encoding_table, int num_byte_values) {
uint16_t* decoding_table = new uint16_t[4096]; // use new for global initialization
for (int byte_value = 0; byte_value < num_byte_values; byte_value++) {
const int encoding_entry = encoding_table[byte_value];
const int code_value = encoding_entry & 0xfff;
const int code_length = encoding_entry >> 12;
const int decoding_entry = (code_length << 8) | byte_value;
const int garbage_length = 12 - code_length;
const int num_copies = 1 << garbage_length;
for (int garbage_bits = 0; garbage_bits < num_copies; garbage_bits++) {
const int extended_code_value = code_value | (garbage_bits << code_length);
decoding_table[extended_code_value & 0xfff] = decoding_entry;
}
}
return decoding_table;
}
template<typename A>
void cpc_compressor<A>::validate_decoding_table(const uint16_t* decoding_table, const uint16_t* encoding_table) const {
for (int decode_this = 0; decode_this < 4096; decode_this++) {
const int tmp_d = decoding_table[decode_this];
const int decoded_byte = tmp_d & 0xff;
const int decoded_length = tmp_d >> 8;
const int tmp_e = encoding_table[decoded_byte];
const int encoded_bit_pattern = tmp_e & 0xfff;
const int encoded_length = tmp_e >> 12;
if (decoded_length != encoded_length) throw std::logic_error("decoded length error");
if (encoded_bit_pattern != (decode_this & ((1 << decoded_length) - 1))) throw std::logic_error("bit pattern error");
}
}
template<typename A>
void cpc_compressor<A>::make_decoding_tables() {
length_limited_unary_decoding_table65 = make_decoding_table(length_limited_unary_encoding_table65, 65);
validate_decoding_table(
length_limited_unary_decoding_table65,
length_limited_unary_encoding_table65
);
for (int i = 0; i < (16 + 6); i++) {
decoding_tables_for_high_entropy_byte[i] = make_decoding_table(encoding_tables_for_high_entropy_byte[i], 256);
validate_decoding_table(
decoding_tables_for_high_entropy_byte[i],
encoding_tables_for_high_entropy_byte[i]
);
}
for (int i = 0; i < 16; i++) {
column_permutations_for_decoding[i] = make_inverse_permutation(column_permutations_for_encoding[i], 56);
}
}
template<typename A>
void cpc_compressor<A>::free_decoding_tables() {
delete[] length_limited_unary_decoding_table65;
for (int i = 0; i < (16 + 6); i++) {
delete[] decoding_tables_for_high_entropy_byte[i];
}
for (int i = 0; i < 16; i++) {
delete[] column_permutations_for_decoding[i];
}
}
template<typename A>
void cpc_compressor<A>::compress(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
switch (source.determine_flavor()) {
case cpc_sketch_alloc<A>::flavor::EMPTY:
break;
case cpc_sketch_alloc<A>::flavor::SPARSE:
compress_sparse_flavor(source, result);
if (result.window_data.size() > 0) throw std::logic_error("window is not expected");
if (result.table_data.size() == 0) throw std::logic_error("table is expected");
break;
case cpc_sketch_alloc<A>::flavor::HYBRID:
compress_hybrid_flavor(source, result);
if (result.window_data.size() > 0) throw std::logic_error("window is not expected");
if (result.table_data.size() == 0) throw std::logic_error("table is expected");
break;
case cpc_sketch_alloc<A>::flavor::PINNED:
compress_pinned_flavor(source, result);
if (result.window_data.size() == 0) throw std::logic_error("window is not expected");
break;
case cpc_sketch_alloc<A>::flavor::SLIDING:
compress_sliding_flavor(source, result);
if (result.window_data.size() == 0) throw std::logic_error("window is expected");
break;
default: throw std::logic_error("Unknown sketch flavor");
}
}
template<typename A>
void cpc_compressor<A>::uncompress(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k, uint64_t num_coupons) const {
switch (cpc_sketch_alloc<A>::determine_flavor(lg_k, num_coupons)) {
case cpc_sketch_alloc<A>::flavor::EMPTY:
target.table = u32_table<A>(2, 6 + lg_k);
break;
case cpc_sketch_alloc<A>::flavor::SPARSE:
uncompress_sparse_flavor(source, target, lg_k);
break;
case cpc_sketch_alloc<A>::flavor::HYBRID:
uncompress_hybrid_flavor(source, target, lg_k);
break;
case cpc_sketch_alloc<A>::flavor::PINNED:
if (source.window_data.size() == 0) throw std::logic_error("window is expected");
uncompress_pinned_flavor(source, target, lg_k, num_coupons);
break;
case cpc_sketch_alloc<A>::flavor::SLIDING:
uncompress_sliding_flavor(source, target, lg_k, num_coupons);
break;
default: std::logic_error("Unknown sketch flavor");
}
}
template<typename A>
void cpc_compressor<A>::compress_sparse_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
if (source.sliding_window.size() > 0) throw std::logic_error("unexpected sliding window");
vector_u32<A> pairs = source.surprising_value_table.unwrapping_get_items();
u32_table<A>::introspective_insertion_sort(pairs.data(), 0, pairs.size());
compress_surprising_values(pairs, source.get_lg_k(), result);
}
template<typename A>
void cpc_compressor<A>::uncompress_sparse_flavor(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k) const {
if (source.window_data.size() > 0) throw std::logic_error("unexpected sliding window");
if (source.table_data.size() == 0) throw std::logic_error("table is expected");
vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, source.table_num_entries, lg_k);
target.table = u32_table<A>::make_from_pairs(pairs.data(), source.table_num_entries, lg_k);
}
// This is complicated because it effectively builds a Sparse version
// of a Pinned sketch before compressing it. Hence the name Hybrid.
template<typename A>
void cpc_compressor<A>::compress_hybrid_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
if (source.sliding_window.size() == 0) throw std::logic_error("no sliding window");
if (source.window_offset != 0) throw std::logic_error("window_offset != 0");
const size_t k = 1 << source.get_lg_k();
vector_u32<A> pairs_from_table = source.surprising_value_table.unwrapping_get_items();
if (pairs_from_table.size() > 0) u32_table<A>::introspective_insertion_sort(pairs_from_table.data(), 0, pairs_from_table.size());
const size_t num_pairs_from_window = source.get_num_coupons() - pairs_from_table.size(); // because the window offset is zero
vector_u32<A> all_pairs = tricky_get_pairs_from_window(source.sliding_window.data(), k, num_pairs_from_window, pairs_from_table.size());
u32_table<A>::merge(
pairs_from_table.data(), 0, pairs_from_table.size(),
all_pairs.data(), pairs_from_table.size(), num_pairs_from_window,
all_pairs.data(), 0
); // note the overlapping subarray trick
compress_surprising_values(all_pairs, source.get_lg_k(), result);
}
template<typename A>
void cpc_compressor<A>::uncompress_hybrid_flavor(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k) const {
if (source.window_data.size() > 0) throw std::logic_error("window is not expected");
if (source.table_data.size() == 0) throw std::logic_error("table is expected");
vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, source.table_num_entries, lg_k);
// In the hybrid flavor, some of these pairs actually
// belong in the window, so we will separate them out,
// moving the "true" pairs to the bottom of the array.
const size_t k = 1 << lg_k;
target.window.resize(k, 0); // important: zero the memory
size_t next_true_pair = 0;
for (size_t i = 0; i < source.table_num_entries; i++) {
const uint32_t row_col = pairs[i];
if (row_col == UINT32_MAX) throw std::logic_error("empty marker is not expected");
const uint8_t col = row_col & 63;
if (col < 8) {
const size_t row = row_col >> 6;
target.window[row] |= 1 << col; // set the window bit
} else {
pairs[next_true_pair++] = row_col; // move true pair down
}
}
target.table = u32_table<A>::make_from_pairs(pairs.data(), next_true_pair, lg_k);
}
template<typename A>
void cpc_compressor<A>::compress_pinned_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
compress_sliding_window(source.sliding_window.data(), source.get_lg_k(), source.get_num_coupons(), result);
vector_u32<A> pairs = source.surprising_value_table.unwrapping_get_items();
if (pairs.size() > 0) {
// Here we subtract 8 from the column indices. Because they are stored in the low 6 bits
// of each row_col pair, and because no column index is less than 8 for a "Pinned" sketch,
// we can simply subtract 8 from the pairs themselves.
// shift the columns over by 8 positions before compressing (because of the window)
for (size_t i = 0; i < pairs.size(); i++) {
if ((pairs[i] & 63) < 8) throw std::logic_error("(pairs[i] & 63) < 8");
pairs[i] -= 8;
}
if (pairs.size() > 0) u32_table<A>::introspective_insertion_sort(pairs.data(), 0, pairs.size());
compress_surprising_values(pairs, source.get_lg_k(), result);
}
}
template<typename A>
void cpc_compressor<A>::uncompress_pinned_flavor(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k, uint32_t num_coupons) const {
if (source.window_data.size() == 0) throw std::logic_error("window is expected");
uncompress_sliding_window(source.window_data.data(), source.window_data_words, target.window, lg_k, num_coupons);
const size_t num_pairs = source.table_num_entries;
if (num_pairs == 0) {
target.table = u32_table<A>(2, 6 + lg_k);
} else {
if (source.table_data.size() == 0) throw std::logic_error("table is expected");
vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, num_pairs, lg_k);
// undo the compressor's 8-column shift
for (size_t i = 0; i < num_pairs; i++) {
if ((pairs[i] & 63) >= 56) throw std::logic_error("(pairs[i] & 63) >= 56");
pairs[i] += 8;
}
target.table = u32_table<A>::make_from_pairs(pairs.data(), num_pairs, lg_k);
}
}
template<typename A>
void cpc_compressor<A>::compress_sliding_flavor(const cpc_sketch_alloc<A>& source, compressed_state<A>& result) const {
compress_sliding_window(source.sliding_window.data(), source.get_lg_k(), source.get_num_coupons(), result);
vector_u32<A> pairs = source.surprising_value_table.unwrapping_get_items();
if (pairs.size() > 0) {
// Here we apply a complicated transformation to the column indices, which
// changes the implied ordering of the pairs, so we must do it before sorting.
const uint8_t pseudo_phase = determine_pseudo_phase(source.get_lg_k(), source.get_num_coupons());
const uint8_t* permutation = column_permutations_for_encoding[pseudo_phase];
const uint8_t offset = source.window_offset;
if (offset > 56) throw std::out_of_range("offset out of range");
for (size_t i = 0; i < pairs.size(); i++) {
const uint32_t row_col = pairs[i];
const size_t row = row_col >> 6;
uint8_t col = row_col & 63;
// first rotate the columns into a canonical configuration: new = ((old - (offset+8)) + 64) mod 64
col = (col + 56 - offset) & 63;
if (col >= 56) throw std::out_of_range("col out of range");
// then apply the permutation
col = permutation[col];
pairs[i] = (row << 6) | col;
}
if (pairs.size() > 0) u32_table<A>::introspective_insertion_sort(pairs.data(), 0, pairs.size());
compress_surprising_values(pairs, source.get_lg_k(), result);
}
}
template<typename A>
void cpc_compressor<A>::uncompress_sliding_flavor(const compressed_state<A>& source, uncompressed_state<A>& target, uint8_t lg_k, uint32_t num_coupons) const {
if (source.window_data.size() == 0) throw std::logic_error("window is expected");
uncompress_sliding_window(source.window_data.data(), source.window_data_words, target.window, lg_k, num_coupons);
const size_t num_pairs = source.table_num_entries;
if (num_pairs == 0) {
target.table = u32_table<A>(2, 6 + lg_k);
} else {
if (source.table_data.size() == 0) throw std::logic_error("table is expected");
vector_u32<A> pairs = uncompress_surprising_values(source.table_data.data(), source.table_data_words, num_pairs, lg_k);
const uint8_t pseudo_phase = determine_pseudo_phase(lg_k, num_coupons);
if (pseudo_phase >= 16) throw std::logic_error("pseudo phase >= 16");
const uint8_t* permutation = column_permutations_for_decoding[pseudo_phase];
uint8_t offset = cpc_sketch_alloc<A>::determine_correct_offset(lg_k, num_coupons);
if (offset > 56) throw std::out_of_range("offset out of range");
for (size_t i = 0; i < num_pairs; i++) {
const uint32_t row_col = pairs[i];
const size_t row = row_col >> 6;
uint8_t col = row_col & 63;
// first undo the permutation
col = permutation[col];
// then undo the rotation: old = (new + (offset+8)) mod 64
col = (col + (offset + 8)) & 63;
pairs[i] = (row << 6) | col;
}
target.table = u32_table<A>::make_from_pairs(pairs.data(), num_pairs, lg_k);
}
}
template<typename A>
void cpc_compressor<A>::compress_surprising_values(const vector_u32<A>& pairs, uint8_t lg_k, compressed_state<A>& result) const {
const size_t k = 1 << lg_k;
const uint64_t num_base_bits = golomb_choose_number_of_base_bits(k + pairs.size(), pairs.size());
const uint64_t table_len = safe_length_for_compressed_pair_buf(k, pairs.size(), num_base_bits);
result.table_data.resize(table_len);
size_t csv_length = low_level_compress_pairs(pairs.data(), pairs.size(), num_base_bits, result.table_data.data());
// At this point we could free the unused portion of the compression output buffer,
// but it is not necessary if it is temporary
// Note: realloc caused strange timing spikes for lgK = 11 and 12.
result.table_data_words = csv_length;
result.table_num_entries = pairs.size();
}
template<typename A>
vector_u32<A> cpc_compressor<A>::uncompress_surprising_values(const uint32_t* data, size_t data_words, size_t num_pairs, uint8_t lg_k) const {
const size_t k = 1 << lg_k;
vector_u32<A> pairs(num_pairs);
const uint8_t num_base_bits = golomb_choose_number_of_base_bits(k + num_pairs, num_pairs);
low_level_uncompress_pairs(pairs.data(), num_pairs, num_base_bits, data, data_words);
return pairs;
}
template<typename A>
void cpc_compressor<A>::compress_sliding_window(const uint8_t* window, uint8_t lg_k, uint32_t num_coupons, compressed_state<A>& target) const {
const size_t k = 1 << lg_k;
const size_t window_buf_len = safe_length_for_compressed_window_buf(k);
target.window_data.resize(window_buf_len);
const uint8_t pseudo_phase = determine_pseudo_phase(lg_k, num_coupons);
size_t data_words = low_level_compress_bytes(window, k, encoding_tables_for_high_entropy_byte[pseudo_phase], target.window_data.data());
// At this point we could free the unused portion of the compression output buffer,
// but it is not necessary if it is temporary
// Note: realloc caused strange timing spikes for lgK = 11 and 12.
target.window_data_words = data_words;
}
template<typename A>
void cpc_compressor<A>::uncompress_sliding_window(const uint32_t* data, size_t data_words, vector_u8<A>& window, uint8_t lg_k, uint32_t num_coupons) const {
const size_t k = 1 << lg_k;
window.resize(k); // zeroing not needed here (unlike the Hybrid Flavor)
const uint8_t pseudo_phase = determine_pseudo_phase(lg_k, num_coupons);
low_level_uncompress_bytes(window.data(), k, decoding_tables_for_high_entropy_byte[pseudo_phase], data, data_words);
}
template<typename A>
size_t cpc_compressor<A>::safe_length_for_compressed_pair_buf(uint64_t k, size_t num_pairs, size_t num_base_bits) {
// Long ybits = k + numPairs; // simpler and safer UB
// The following tighter UB on ybits is based on page 198
// of the textbook "Managing Gigabytes" by Witten, Moffat, and Bell.
// Notice that if numBaseBits == 0 it coincides with (k + numPairs).
const size_t ybits = num_pairs * (1 + num_base_bits) + (k >> num_base_bits);
const size_t xbits = 12 * num_pairs;
const size_t padding = num_base_bits > 10 ? 0 : 10 - num_base_bits;
return divide_longs_rounding_up(xbits + ybits + padding, 32);
}
// Explanation of padding: we write
// 1) xdelta (huffman, provides at least 1 bit, requires 12-bit lookahead)
// 2) ydeltaGolombHi (unary, provides at least 1 bit, requires 8-bit lookahead)
// 3) ydeltaGolombLo (straight B bits).
// So the 12-bit lookahead is the tight constraint, but there are at least (2 + B) bits emitted,
// so we would be safe with max (0, 10 - B) bits of padding at the end of the bitstream.
template<typename A>
size_t cpc_compressor<A>::safe_length_for_compressed_window_buf(uint64_t k) { // measured in 32-bit words
const size_t bits = 12 * k + 11; // 11 bits of padding, due to 12-bit lookahead, with 1 bit certainly present.
return divide_longs_rounding_up(bits, 32);
}
template<typename A>
uint8_t cpc_compressor<A>::determine_pseudo_phase(uint8_t lg_k, uint64_t c) {
const size_t k = 1 << lg_k;
// This mid-range logic produces pseudo-phases. They are used to select encoding tables.
// The thresholds were chosen by hand after looking at plots of measured compression.
if (1000 * c < 2375 * k) {
if ( 4 * c < 3 * k) return 16 + 0; // mid-range table
else if ( 10 * c < 11 * k) return 16 + 1; // mid-range table
else if ( 100 * c < 132 * k) return 16 + 2; // mid-range table
else if ( 3 * c < 5 * k) return 16 + 3; // mid-range table
else if (1000 * c < 1965 * k) return 16 + 4; // mid-range table
else if (1000 * c < 2275 * k) return 16 + 5; // mid-range table
else return 6; // steady-state table employed before its actual phase
} else { // This steady-state logic produces true phases. They are used to select
// encoding tables, and also column permutations for the "Sliding" flavor.
if (lg_k < 4) throw std::logic_error("lgK < 4");
const size_t tmp = c >> (lg_k - 4);
const uint8_t phase = tmp & 15;
if (phase < 0 || phase >= 16) throw std::out_of_range("wrong phase");
return phase;
}
}
static inline void maybe_flush_bitbuf(uint64_t& bitbuf, uint8_t& bufbits, uint32_t* wordarr, size_t& wordindex) {
if (bufbits >= 32) {
wordarr[wordindex++] = bitbuf & 0xffffffff;
bitbuf = bitbuf >> 32;
bufbits -= 32;
}
}
static inline void maybe_fill_bitbuf(uint64_t& bitbuf, uint8_t& bufbits, const uint32_t* wordarr, size_t& wordindex, uint8_t minbits) {
if (bufbits < minbits) {
bitbuf |= static_cast<uint64_t>(wordarr[wordindex++]) << bufbits;
bufbits += 32;
}
}
// This returns the number of compressed words that were actually used.
// It is the caller's responsibility to ensure that the compressed_words array is long enough.
template<typename A>
size_t cpc_compressor<A>::low_level_compress_bytes(
const uint8_t* byte_array, // input
size_t num_bytes_to_encode,
const uint16_t* encoding_table,
uint32_t* compressed_words // output
) const {
uint64_t bitbuf = 0; // bits are packed into this first, then are flushed to compressed_words
uint8_t bufbits = 0; // number of bits currently in bitbuf; must be between 0 and 31
size_t next_word_index = 0;
for (size_t byte_index = 0; byte_index < num_bytes_to_encode; byte_index++) {
const uint64_t code_info = encoding_table[byte_array[byte_index]];
const uint64_t code_val = code_info & 0xfff;
const int code_len = code_info >> 12;
bitbuf |= (code_val << bufbits);
bufbits += code_len;
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
}
// Pad the bitstream with 11 zero-bits so that the decompressor's 12-bit peek can't overrun its input.
bufbits += 11;
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
if (bufbits > 0) { // We are done encoding now, so we flush the bit buffer.
if (bufbits >= 32) throw std::logic_error("bufbits >= 32");
compressed_words[next_word_index++] = bitbuf & 0xffffffff;
bitbuf = 0; bufbits = 0; // not really necessary
}
return next_word_index;
}
template<typename A>
void cpc_compressor<A>::low_level_uncompress_bytes(
uint8_t* byte_array, // output
size_t num_bytes_to_decode,
const uint16_t* decoding_table,
const uint32_t* compressed_words, // input
size_t num_compressed_words
) const {
size_t word_index = 0;
uint64_t bitbuf = 0;
uint8_t bufbits = 0;
if (byte_array == nullptr) throw std::logic_error("byte_array == NULL");
if (decoding_table == nullptr) throw std::logic_error("decoding_table == NULL");
if (compressed_words == nullptr) throw std::logic_error("compressed_words == NULL");
for (size_t byte_index = 0; byte_index < num_bytes_to_decode; byte_index++) {
maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, word_index, 12); // ensure 12 bits in bit buffer
const size_t peek12 = bitbuf & 0xfff; // These 12 bits will include an entire Huffman codeword.
const uint16_t lookup = decoding_table[peek12];
const uint8_t code_word_length = lookup >> 8;
const uint8_t decoded_byte = lookup & 0xff;
byte_array[byte_index] = decoded_byte;
bitbuf >>= code_word_length;
bufbits -= code_word_length;
}
// Buffer over-run should be impossible unless there is a bug.
// However, we might as well check here.
if (word_index > num_compressed_words) throw std::logic_error("word_index > num_compressed_words");
}
static inline uint64_t read_unary(
const uint32_t* compressed_words,
size_t& next_word_index,
uint64_t& bitbuf,
uint8_t& bufbits
);
static inline void write_unary(
uint32_t* compressed_words,
size_t& next_word_index_ptr,
uint64_t& bit_buf_ptr,
uint8_t& buf_bits_ptr,
uint64_t value
);
// Here "pairs" refers to row/column pairs that specify
// the positions of surprising values in the bit matrix.
// returns the number of compressed_words actually used
template<typename A>
size_t cpc_compressor<A>::low_level_compress_pairs(
const uint32_t* pair_array, // input
size_t num_pairs_to_encode,
size_t num_base_bits,
uint32_t* compressed_words // output
) const {
uint64_t bitbuf = 0;
uint8_t bufbits = 0;
size_t next_word_index = 0;
const uint64_t golomb_lo_mask = (1 << num_base_bits) - 1;
uint64_t predicted_row_index = 0;
uint16_t predicted_col_index = 0;
for (size_t pair_index = 0; pair_index < num_pairs_to_encode; pair_index++) {
const uint32_t row_col = pair_array[pair_index];
const uint64_t row_index = row_col >> 6;
const uint16_t col_index = row_col & 63;
if (row_index != predicted_row_index) predicted_col_index = 0;
if (row_index < predicted_row_index) throw std::logic_error("row_index < predicted_row_index");
if (col_index < predicted_col_index) throw std::logic_error("col_index < predicted_col_index");
const uint64_t y_delta = row_index - predicted_row_index;
const uint16_t x_delta = col_index - predicted_col_index;
predicted_row_index = row_index;
predicted_col_index = col_index + 1;
const uint64_t code_info = length_limited_unary_encoding_table65[x_delta];
const uint64_t code_val = code_info & 0xfff;
const uint8_t code_len = code_info >> 12;
bitbuf |= code_val << bufbits;
bufbits += code_len;
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
const uint64_t golomb_lo = y_delta & golomb_lo_mask;
const uint64_t golomb_hi = y_delta >> num_base_bits;
write_unary(compressed_words, next_word_index, bitbuf, bufbits, golomb_hi);
bitbuf |= golomb_lo << bufbits;
bufbits += num_base_bits;
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
}
// Pad the bitstream so that the decompressor's 12-bit peek can't overrun its input.
const uint8_t padding = (num_base_bits > 10) ? 0 : 10 - num_base_bits;
bufbits += padding;
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
if (bufbits > 0) { // We are done encoding now, so we flush the bit buffer
if (bufbits >= 32) throw std::logic_error("bufbits >= 32");
compressed_words[next_word_index++] = bitbuf & 0xffffffff;
bitbuf = 0; bufbits = 0; // not really necessary
}
return next_word_index;
}
template<typename A>
void cpc_compressor<A>::low_level_uncompress_pairs(
uint32_t* pair_array, // output
size_t num_pairs_to_decode,
size_t num_base_bits,
const uint32_t* compressed_words, // input
size_t num_compressed_words
) const {
size_t word_index = 0;
uint64_t bitbuf = 0;
uint8_t bufbits = 0;
const uint64_t golomb_lo_mask = (1 << num_base_bits) - 1;
uint64_t predicted_row_index = 0;
uint16_t predicted_col_index = 0;
// for each pair we need to read:
// x_delta (12-bit length-limited unary)
// y_delta_hi (unary)
// y_delta_lo (basebits)
for (size_t pair_index = 0; pair_index < num_pairs_to_decode; pair_index++) {
maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, word_index, 12); // ensure 12 bits in bit buffer
const size_t peek12 = bitbuf & 0xfff;
const uint16_t lookup = length_limited_unary_decoding_table65[peek12];
const int code_word_length = lookup >> 8;
const int16_t x_delta = lookup & 0xff;
bitbuf >>= code_word_length;
bufbits -= code_word_length;
const uint64_t golomb_hi = read_unary(compressed_words, word_index, bitbuf, bufbits);
maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, word_index, num_base_bits); // ensure num_base_bits in bit buffer
const uint64_t golomb_lo = bitbuf & golomb_lo_mask;
bitbuf >>= num_base_bits;
bufbits -= num_base_bits;
const int64_t y_delta = (golomb_hi << num_base_bits) | golomb_lo;
// Now that we have x_delta and y_delta, we can compute the pair's row and column
if (y_delta > 0) predicted_col_index = 0;
const uint64_t row_index = predicted_row_index + y_delta;
const uint16_t col_index = predicted_col_index + x_delta;
const uint32_t row_col = (row_index << 6) | col_index;
pair_array[pair_index] = row_col;
predicted_row_index = row_index;
predicted_col_index = col_index + 1;
}
if (word_index > num_compressed_words) throw std::logic_error("word_index > num_compressed_words"); // check for buffer over-run
}
uint64_t read_unary(
const uint32_t* compressed_words,
size_t& next_word_index,
uint64_t& bitbuf,
uint8_t& bufbits
) {
if (compressed_words == nullptr) throw std::logic_error("compressed_words == NULL");
size_t subtotal = 0;
while (true) {
maybe_fill_bitbuf(bitbuf, bufbits, compressed_words, next_word_index, 8); // ensure 8 bits in bit buffer
const uint8_t peek8 = bitbuf & 0xff; // These 8 bits include either all or part of the Unary codeword
const uint8_t trailing_zeros = byte_trailing_zeros_table[peek8];
if (trailing_zeros > 8) throw std::out_of_range("trailing_zeros out of range");
if (trailing_zeros < 8) {
bufbits -= 1 + trailing_zeros;
bitbuf >>= 1 + trailing_zeros;
return subtotal + trailing_zeros;
}
// The codeword was partial, so read some more
subtotal += 8;
bufbits -= 8;
bitbuf >>= 8;
}
}
void write_unary(
uint32_t* compressed_words,
size_t& next_word_index,
uint64_t& bitbuf,
uint8_t& bufbits,
uint64_t value
) {
if (compressed_words == nullptr) throw std::logic_error("compressed_words == NULL");
if (bufbits > 31) throw std::out_of_range("bufbits out of range");
uint64_t remaining = value;
while (remaining >= 16) {
remaining -= 16;
// Here we output 16 zeros, but we don't need to physically write them into bitbuf
// because it already contains zeros in that region.
bufbits += 16; // Record the fact that 16 bits of output have occurred.
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
}
if (remaining > 15) throw std::out_of_range("remaining out of range");
const uint64_t the_unary_code = 1 << remaining;
bitbuf |= the_unary_code << bufbits;
bufbits += 1 + remaining;
maybe_flush_bitbuf(bitbuf, bufbits, compressed_words, next_word_index);
}
// The empty space that this leaves at the beginning of the output array
// will be filled in later by the caller.
template<typename A>
vector_u32<A> cpc_compressor<A>::tricky_get_pairs_from_window(const uint8_t* window, uint32_t k, uint32_t num_pairs_to_get, uint32_t empty_space) {
const size_t output_length = empty_space + num_pairs_to_get;
vector_u32<A> pairs(output_length);
size_t pair_index = empty_space;
for (unsigned row_index = 0; row_index < k; row_index++) {
uint8_t byte = window[row_index];
while (byte != 0) {
const uint8_t col_index = byte_trailing_zeros_table[byte];
byte = byte ^ (1 << col_index); // erase the 1
pairs[pair_index++] = (row_index << 6) | col_index;
}
}
if (pair_index != output_length) throw std::logic_error("pair_index != output_length");
return pairs;
}
// returns an integer that is between
// zero and ceiling(log_2(k)) - 1, inclusive
template<typename A>
uint64_t cpc_compressor<A>::golomb_choose_number_of_base_bits(uint64_t k, uint64_t count) {
if (k < 1) throw std::invalid_argument("golomb_choose_number_of_base_bits: k < 1");
if (count < 1) throw std::invalid_argument("golomb_choose_number_of_base_bits: count < 1");
const uint64_t quotient = (k - count) / count; // integer division
if (quotient == 0) return 0;
else return long_floor_log2_of_long(quotient);
}
} /* namespace datasketches */
#endif