| // Licensed to the Apache Software Foundation (ASF) under one |
| // or more contributor license agreements. See the NOTICE file |
| // distributed with this work for additional information |
| // regarding copyright ownership. The ASF licenses this file |
| // to you under the Apache License, Version 2.0 (the |
| // "License"); you may not use this file except in compliance |
| // with the License. You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, |
| // software distributed under the License is distributed on an |
| // "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| // KIND, either express or implied. See the License for the |
| // specific language governing permissions and limitations |
| // under the License. |
| |
| use arrow::array::{ArrayRef, Int32Array, RecordBatch, StringArray}; |
| use datafusion::arrow::datatypes::{DataType, Field, Schema}; |
| use datafusion::dataframe::DataFrameWriteOptions; |
| use datafusion::error::Result; |
| use datafusion::prelude::*; |
| use datafusion_common::config::CsvOptions; |
| use datafusion_common::parsers::CompressionTypeVariant; |
| use datafusion_common::DataFusionError; |
| use std::fs::File; |
| use std::io::Write; |
| use std::sync::Arc; |
| use tempfile::tempdir; |
| |
| /// This example demonstrates using DataFusion's DataFrame API to |
| /// |
| /// * [read_parquet]: execute queries against parquet files |
| /// * [read_csv]: execute queries against csv files |
| /// * [read_memory]: execute queries against in-memory arrow data |
| /// |
| /// This example demonstrates the various methods to write out a DataFrame to local storage. |
| /// See datafusion-examples/examples/external_dependency/dataframe-to-s3.rs for an example |
| /// using a remote object store. |
| /// * [write_out]: write out a DataFrame to a table, parquet file, csv file, or json file |
| #[tokio::main] |
| async fn main() -> Result<()> { |
| // The SessionContext is the main high level API for interacting with DataFusion |
| let ctx = SessionContext::new(); |
| read_parquet(&ctx).await?; |
| read_csv(&ctx).await?; |
| read_memory(&ctx).await?; |
| write_out(&ctx).await?; |
| Ok(()) |
| } |
| |
| /// Use DataFrame API to |
| /// 1. Read parquet files, |
| /// 2. Show the schema |
| /// 3. Select columns and rows |
| async fn read_parquet(ctx: &SessionContext) -> Result<()> { |
| // Find the local path of "alltypes_plain.parquet" |
| let testdata = datafusion::test_util::parquet_test_data(); |
| let filename = &format!("{testdata}/alltypes_plain.parquet"); |
| |
| // Read the parquet files and show its schema using 'describe' |
| let parquet_df = ctx |
| .read_parquet(filename, ParquetReadOptions::default()) |
| .await?; |
| |
| // show its schema using 'describe' |
| parquet_df.clone().describe().await?.show().await?; |
| |
| // Select three columns and filter the results |
| // so that only rows where id > 1 are returned |
| parquet_df |
| .select_columns(&["id", "bool_col", "timestamp_col"])? |
| .filter(col("id").gt(lit(1)))? |
| .show() |
| .await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to |
| /// 1. Read CSV files |
| /// 2. Optionally specify schema |
| async fn read_csv(ctx: &SessionContext) -> Result<()> { |
| // create example.csv file in a temporary directory |
| let dir = tempdir()?; |
| let file_path = dir.path().join("example.csv"); |
| { |
| let mut file = File::create(&file_path)?; |
| // write CSV data |
| file.write_all( |
| r#"id,time,vote,unixtime,rating |
| a1,"10 6, 2013",3,1381017600,5.0 |
| a2,"08 9, 2013",2,1376006400,4.5"# |
| .as_bytes(), |
| )?; |
| } // scope closes the file |
| let file_path = file_path.to_str().unwrap(); |
| |
| // You can read a CSV file and DataFusion will infer the schema automatically |
| let csv_df = ctx.read_csv(file_path, CsvReadOptions::default()).await?; |
| csv_df.show().await?; |
| |
| // If you know the types of your data you can specify them explicitly |
| let schema = Schema::new(vec![ |
| Field::new("id", DataType::Utf8, false), |
| Field::new("time", DataType::Utf8, false), |
| Field::new("vote", DataType::Int32, true), |
| Field::new("unixtime", DataType::Int64, false), |
| Field::new("rating", DataType::Float32, true), |
| ]); |
| // Create a csv option provider with the desired schema |
| let csv_read_option = CsvReadOptions { |
| // Update the option provider with the defined schema |
| schema: Some(&schema), |
| ..Default::default() |
| }; |
| let csv_df = ctx.read_csv(file_path, csv_read_option).await?; |
| csv_df.show().await?; |
| |
| // You can also create DataFrames from the result of sql queries |
| // and using the `enable_url_table` refer to local files directly |
| let dyn_ctx = ctx.clone().enable_url_table(); |
| let csv_df = dyn_ctx |
| .sql(&format!("SELECT rating, unixtime FROM '{}'", file_path)) |
| .await?; |
| csv_df.show().await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to: |
| /// 1. Read in-memory data. |
| async fn read_memory(ctx: &SessionContext) -> Result<()> { |
| // define data in memory |
| let a: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d"])); |
| let b: ArrayRef = Arc::new(Int32Array::from(vec![1, 10, 10, 100])); |
| let batch = RecordBatch::try_from_iter(vec![("a", a), ("b", b)])?; |
| |
| // declare a table in memory. In Apache Spark API, this corresponds to createDataFrame(...). |
| ctx.register_batch("t", batch)?; |
| let df = ctx.table("t").await?; |
| |
| // construct an expression corresponding to "SELECT a, b FROM t WHERE b = 10" in SQL |
| let filter = col("b").eq(lit(10)); |
| let df = df.select_columns(&["a", "b"])?.filter(filter)?; |
| |
| // print the results |
| df.show().await?; |
| |
| Ok(()) |
| } |
| |
| /// Use the DataFrame API to: |
| /// 1. Write out a DataFrame to a table |
| /// 2. Write out a DataFrame to a parquet file |
| /// 3. Write out a DataFrame to a csv file |
| /// 4. Write out a DataFrame to a json file |
| async fn write_out(ctx: &SessionContext) -> std::result::Result<(), DataFusionError> { |
| let mut df = ctx.sql("values ('a'), ('b'), ('c')").await.unwrap(); |
| |
| // Ensure the column names and types match the target table |
| df = df.with_column_renamed("column1", "tablecol1").unwrap(); |
| |
| ctx.sql( |
| "create external table |
| test(tablecol1 varchar) |
| stored as parquet |
| location './datafusion-examples/test_table/'", |
| ) |
| .await? |
| .collect() |
| .await?; |
| |
| // This is equivalent to INSERT INTO test VALUES ('a'), ('b'), ('c'). |
| // The behavior of write_table depends on the TableProvider's implementation |
| // of the insert_into method. |
| df.clone() |
| .write_table("test", DataFrameWriteOptions::new()) |
| .await?; |
| |
| df.clone() |
| .write_parquet( |
| "./datafusion-examples/test_parquet/", |
| DataFrameWriteOptions::new(), |
| None, |
| ) |
| .await?; |
| |
| df.clone() |
| .write_csv( |
| "./datafusion-examples/test_csv/", |
| // DataFrameWriteOptions contains options which control how data is written |
| // such as compression codec |
| DataFrameWriteOptions::new(), |
| Some(CsvOptions::default().with_compression(CompressionTypeVariant::GZIP)), |
| ) |
| .await?; |
| |
| df.clone() |
| .write_json( |
| "./datafusion-examples/test_json/", |
| DataFrameWriteOptions::new(), |
| None, |
| ) |
| .await?; |
| |
| Ok(()) |
| } |