blob: 85724a72399ad76d356bec8a079131ef3c9828c9 [file] [log] [blame] [view]
<!---
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->
# DataFrame API
## DataFrame overview
A DataFrame represents a logical set of rows with the same named columns,
similar to a [Pandas DataFrame] or [Spark DataFrame].
DataFrames are typically created by calling a method on [`SessionContext`], such
as [`read_csv`], and can then be modified by calling the transformation methods,
such as [`filter`], [`select`], [`aggregate`], and [`limit`] to build up a query
definition.
The query can be executed by calling the [`collect`] method.
DataFusion DataFrames use lazy evaluation, meaning that each transformation
creates a new plan but does not actually perform any immediate actions. This
approach allows for the overall plan to be optimized before execution. The plan
is evaluated (executed) when an action method is invoked, such as [`collect`].
See the [Library Users Guide] for more details.
The DataFrame API is well documented in the [API reference on docs.rs].
Please refer to the [Expressions Reference] for more information on
building logical expressions (`Expr`) to use with the DataFrame API.
## Example
The DataFrame struct is part of DataFusion's `prelude` and can be imported with
the following statement.
```rust
use datafusion::prelude::*;
```
Here is a minimal example showing the execution of a query using the DataFrame API.
Create DataFrame using macro API from in memory rows
```rust
use datafusion::prelude::*;
use datafusion::error::Result;
#[tokio::main]
async fn main() -> Result<()> {
// Create a new dataframe with in-memory data using macro
let df = dataframe!(
"a" => [1, 2, 3],
"b" => [true, true, false],
"c" => [Some("foo"), Some("bar"), None]
)?;
df.show().await?;
Ok(())
}
```
Create DataFrame from file or in memory rows using standard API
```rust
use datafusion::arrow::array::{Int32Array, RecordBatch, StringArray};
use datafusion::arrow::datatypes::{DataType, Field, Schema};
use datafusion::error::Result;
use datafusion::functions_aggregate::expr_fn::min;
use datafusion::prelude::*;
use std::sync::Arc;
#[tokio::main]
async fn main() -> Result<()> {
// Read the data from a csv file
let ctx = SessionContext::new();
let df = ctx.read_csv("tests/data/example.csv", CsvReadOptions::new()).await?;
let df = df.filter(col("a").lt_eq(col("b")))?
.aggregate(vec![col("a")], vec![min(col("b"))])?
.limit(0, Some(100))?;
// Print results
df.show().await?;
// Create a new dataframe with in-memory data
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, true),
Field::new("name", DataType::Utf8, true),
]);
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![
Arc::new(Int32Array::from(vec![1, 2, 3])),
Arc::new(StringArray::from(vec!["foo", "bar", "baz"])),
],
)?;
let df = ctx.read_batch(batch)?;
df.show().await?;
Ok(())
}
```
[pandas dataframe]: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
[spark dataframe]: https://spark.apache.org/docs/latest/sql-programming-guide.html
[`sessioncontext`]: https://docs.rs/datafusion/latest/datafusion/execution/context/struct.SessionContext.html
[`read_csv`]: https://docs.rs/datafusion/latest/datafusion/execution/context/struct.SessionContext.html#method.read_csv
[`filter`]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html#method.filter
[`select`]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html#method.select
[`aggregate`]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html#method.aggregate
[`limit`]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html#method.limit
[`collect`]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html#method.collect
[library users guide]: ../library-user-guide/using-the-dataframe-api.md
[api reference on docs.rs]: https://docs.rs/datafusion/latest/datafusion/dataframe/struct.DataFrame.html
[expressions reference]: expressions