| commit | b48d5872661017ec21ea71f7dbb9569f2f0bf797 | [log] [tgz] |
|---|---|---|
| author | Tim Saucer <timsaucer@gmail.com> | Sun Feb 16 07:50:46 2025 -0500 |
| committer | Tim Saucer <timsaucer@gmail.com> | Sun Feb 16 07:50:46 2025 -0500 |
| tree | d0f85e2363881f2a056cc2535fc658b8d915c6fc | |
| parent | b3f498f233771625bcc7793c526958b5f592698a [diff] |
Limit pyarrow version per issue # 1023
This is a Python library that binds to Apache Arrow in-memory query engine DataFusion.
DataFusion's Python bindings can be used as a foundation for building new data systems in Python. Here are some examples:
It is also possible to use these Python bindings directly for DataFrame and SQL operations, but you may find that Polars and DuckDB are more suitable for this use case, since they have more of an end-user focus and are more actively maintained than these Python bindings.
The following example demonstrates running a SQL query against a Parquet file using DataFusion, storing the results in a Pandas DataFrame, and then plotting a chart.
The Parquet file used in this example can be downloaded from the following page:
from datafusion import SessionContext # Create a DataFusion context ctx = SessionContext() # Register table with context ctx.register_parquet('taxi', 'yellow_tripdata_2021-01.parquet') # Execute SQL df = ctx.sql("select passenger_count, count(*) " "from taxi " "where passenger_count is not null " "group by passenger_count " "order by passenger_count") # convert to Pandas pandas_df = df.to_pandas() # create a chart fig = pandas_df.plot(kind="bar", title="Trip Count by Number of Passengers").get_figure() fig.savefig('chart.png')
This produces the following chart:
It is possible to configure runtime (memory and disk settings) and configuration settings when creating a context.
runtime = ( RuntimeEnvBuilder() .with_disk_manager_os() .with_fair_spill_pool(10000000) ) config = ( SessionConfig() .with_create_default_catalog_and_schema(True) .with_default_catalog_and_schema("foo", "bar") .with_target_partitions(8) .with_information_schema(True) .with_repartition_joins(False) .with_repartition_aggregations(False) .with_repartition_windows(False) .with_parquet_pruning(False) .set("datafusion.execution.parquet.pushdown_filters", "true") ) ctx = SessionContext(config, runtime)
Refer to the API documentation for more information.
Printing the context will show the current configuration settings.
print(ctx)
See examples for more information.
uv add datafusion
pip install datafusion # or python -m pip install datafusion
conda install -c conda-forge datafusion
You can verify the installation by running:
>>> import datafusion >>> datafusion.__version__ '0.6.0'
This assumes that you have rust and cargo installed. We use the workflow recommended by pyo3 and maturin. The Maturin tools used in this workflow can be installed either via uv or pip. Both approaches should offer the same experience. It is recommended to use uv since it has significant performance improvements over pip.
Bootstrap (uv):
By default uv will attempt to build the datafusion python package. For our development we prefer to build manually. This means that when creating your virtual environment using uv sync you need to pass in the additional --no-install-package datafusion and for uv run commands the additional parameter --no-project
# fetch this repo git clone git@github.com:apache/datafusion-python.git # create the virtual enviornment uv sync --dev --no-install-package datafusion # activate the environment source .venv/bin/activate
Bootstrap (pip):
# fetch this repo git clone git@github.com:apache/datafusion-python.git # prepare development environment (used to build wheel / install in development) python3 -m venv .venv # activate the venv source .venv/bin/activate # update pip itself if necessary python -m pip install -U pip # install dependencies python -m pip install -r pyproject.toml
The tests rely on test data in git submodules.
git submodule update --init
Whenever rust code changes (your changes or via git pull):
# make sure you activate the venv using "source venv/bin/activate" first maturin develop --uv python -m pytest
Alternatively if you are using uv you can do the following without needing to activate the virtual environment:
uv run --no-project maturin develop --uv uv --no-project pytest .
datafusion-python takes advantage of pre-commit to assist developers with code linting to help reduce the number of commits that ultimately fail in CI due to linter errors. Using the pre-commit hooks is optional for the developer but certainly helpful for keeping PRs clean and concise.
Our pre-commit hooks can be installed by running pre-commit install, which will install the configurations in your DATAFUSION_PYTHON_ROOT/.github directory and run each time you perform a commit, failing to complete the commit if an offending lint is found allowing you to make changes locally before pushing.
The pre-commit hooks can also be run adhoc without installing them by simply running pre-commit run --all-files
There are scripts in ci/scripts for running Rust and Python linters.
./ci/scripts/python_lint.sh ./ci/scripts/rust_clippy.sh ./ci/scripts/rust_fmt.sh ./ci/scripts/rust_toml_fmt.sh
To change test dependencies, change the pyproject.toml and run
uv sync --dev --no-install-package datafusion