apply black update
diff --git a/datafusion/__init__.py b/datafusion/__init__.py
index b2e1028..bc36cef 100644
--- a/datafusion/__init__.py
+++ b/datafusion/__init__.py
@@ -104,9 +104,7 @@
     Create a new User Defined Aggregate Function
     """
     if not issubclass(accum, Accumulator):
-        raise TypeError(
-            "`accum` must implement the abstract base class Accumulator"
-        )
+        raise TypeError("`accum` must implement the abstract base class Accumulator")
     if name is None:
         name = accum.__qualname__
     return AggregateUDF(
diff --git a/datafusion/tests/generic.py b/datafusion/tests/generic.py
index 1f984a4..0739979 100644
--- a/datafusion/tests/generic.py
+++ b/datafusion/tests/generic.py
@@ -50,9 +50,7 @@
         datetime.datetime.now() - datetime.timedelta(days=1),
         datetime.datetime.now() + datetime.timedelta(days=1),
     ]
-    return pa.array(
-        data, type=pa.timestamp(f), mask=np.array([False, True, False])
-    )
+    return pa.array(data, type=pa.timestamp(f), mask=np.array([False, True, False]))
 
 
 def data_date32():
@@ -61,9 +59,7 @@
         datetime.date(1980, 1, 1),
         datetime.date(2030, 1, 1),
     ]
-    return pa.array(
-        data, type=pa.date32(), mask=np.array([False, True, False])
-    )
+    return pa.array(data, type=pa.date32(), mask=np.array([False, True, False]))
 
 
 def data_timedelta(f):
@@ -72,9 +68,7 @@
         datetime.timedelta(days=1),
         datetime.timedelta(seconds=1),
     ]
-    return pa.array(
-        data, type=pa.duration(f), mask=np.array([False, True, False])
-    )
+    return pa.array(data, type=pa.duration(f), mask=np.array([False, True, False]))
 
 
 def data_binary_other():
diff --git a/datafusion/tests/test_dataframe.py b/datafusion/tests/test_dataframe.py
index 51f7c22..7c75466 100644
--- a/datafusion/tests/test_dataframe.py
+++ b/datafusion/tests/test_dataframe.py
@@ -124,9 +124,7 @@
 
 
 def test_with_column_renamed(df):
-    df = df.with_column("c", column("a") + column("b")).with_column_renamed(
-        "c", "sum"
-    )
+    df = df.with_column("c", column("a") + column("b")).with_column_renamed("c", "sum")
 
     result = df.collect()[0]
 
@@ -190,9 +188,7 @@
         [pa.array([1, 2, 3]), pa.array([4, 5, 6])],
         names=["a", "b"],
     )
-    df_b = ctx.create_dataframe([[batch]]).sort(
-        column("a").sort(ascending=True)
-    )
+    df_b = ctx.create_dataframe([[batch]]).sort(column("a").sort(ascending=True))
 
     assert df_a.collect() == df_b.collect()
 
@@ -201,9 +197,7 @@
     df = df.select(
         column("a"),
         f.alias(
-            f.window(
-                "lead", [column("b")], order_by=[f.order_by(column("b"))]
-            ),
+            f.window("lead", [column("b")], order_by=[f.order_by(column("b"))]),
             "a_next",
         ),
     )
@@ -282,9 +276,7 @@
         [pa.array([3]), pa.array([6])],
         names=["a", "b"],
     )
-    df_c = ctx.create_dataframe([[batch]]).sort(
-        column("a").sort(ascending=True)
-    )
+    df_c = ctx.create_dataframe([[batch]]).sort(column("a").sort(ascending=True))
 
     df_a_i_b = df_a.intersect(df_b).sort(column("a").sort(ascending=True))
 
@@ -310,9 +302,7 @@
         [pa.array([1, 2]), pa.array([4, 5])],
         names=["a", "b"],
     )
-    df_c = ctx.create_dataframe([[batch]]).sort(
-        column("a").sort(ascending=True)
-    )
+    df_c = ctx.create_dataframe([[batch]]).sort(column("a").sort(ascending=True))
 
     df_a_e_b = df_a.except_all(df_b).sort(column("a").sort(ascending=True))
 
@@ -347,9 +337,7 @@
         [pa.array([1, 2, 3, 3, 4, 5]), pa.array([4, 5, 6, 6, 7, 8])],
         names=["a", "b"],
     )
-    df_c = ctx.create_dataframe([[batch]]).sort(
-        column("a").sort(ascending=True)
-    )
+    df_c = ctx.create_dataframe([[batch]]).sort(column("a").sort(ascending=True))
 
     df_a_u_b = df_a.union(df_b).sort(column("a").sort(ascending=True))
 
@@ -373,9 +361,7 @@
         [pa.array([1, 2, 3, 4, 5]), pa.array([4, 5, 6, 7, 8])],
         names=["a", "b"],
     )
-    df_c = ctx.create_dataframe([[batch]]).sort(
-        column("a").sort(ascending=True)
-    )
+    df_c = ctx.create_dataframe([[batch]]).sort(column("a").sort(ascending=True))
 
     df_a_u_b = df_a.union(df_b, True).sort(column("a").sort(ascending=True))
 
diff --git a/datafusion/tests/test_functions.py b/datafusion/tests/test_functions.py
index daa2f19..93ec3cf 100644
--- a/datafusion/tests/test_functions.py
+++ b/datafusion/tests/test_functions.py
@@ -59,9 +59,7 @@
     """
     Test literals with arithmetic operations
     """
-    df = df.select(
-        literal(1) + column("b"), f.concat(column("a"), literal("!"))
-    )
+    df = df.select(literal(1) + column("b"), f.concat(column("a"), literal("!")))
     result = df.collect()
     assert len(result) == 1
     result = result[0]
@@ -72,9 +70,7 @@
 def test_math_functions():
     ctx = SessionContext()
     # create a RecordBatch and a new DataFrame from it
-    batch = pa.RecordBatch.from_arrays(
-        [pa.array([0.1, -0.7, 0.55])], names=["value"]
-    )
+    batch = pa.RecordBatch.from_arrays([pa.array([0.1, -0.7, 0.55])], names=["value"])
     df = ctx.create_dataframe([[batch]])
 
     values = np.array([0.1, -0.7, 0.55])
@@ -103,15 +99,9 @@
     np.testing.assert_array_almost_equal(result.column(4), np.arcsin(values))
     np.testing.assert_array_almost_equal(result.column(5), np.arccos(values))
     np.testing.assert_array_almost_equal(result.column(6), np.exp(values))
-    np.testing.assert_array_almost_equal(
-        result.column(7), np.log(values + 1.0)
-    )
-    np.testing.assert_array_almost_equal(
-        result.column(8), np.log2(values + 1.0)
-    )
-    np.testing.assert_array_almost_equal(
-        result.column(9), np.log10(values + 1.0)
-    )
+    np.testing.assert_array_almost_equal(result.column(7), np.log(values + 1.0))
+    np.testing.assert_array_almost_equal(result.column(8), np.log2(values + 1.0))
+    np.testing.assert_array_almost_equal(result.column(9), np.log10(values + 1.0))
     np.testing.assert_array_less(result.column(10), np.ones_like(values))
 
 
@@ -149,18 +139,9 @@
     )
     assert result.column(1) == pa.array(
         [
-            b(
-                "185F8DB32271FE25F561A6FC938B2E26"
-                "4306EC304EDA518007D1764826381969"
-            ),
-            b(
-                "78AE647DC5544D227130A0682A51E30B"
-                "C7777FBB6D8A8F17007463A3ECD1D524"
-            ),
-            b(
-                "BB7208BC9B5D7C04F1236A82A0093A5E"
-                "33F40423D5BA8D4266F7092C3BA43B62"
-            ),
+            b("185F8DB32271FE25F561A6FC938B2E26" "4306EC304EDA518007D1764826381969"),
+            b("78AE647DC5544D227130A0682A51E30B" "C7777FBB6D8A8F17007463A3ECD1D524"),
+            b("BB7208BC9B5D7C04F1236A82A0093A5E" "33F40423D5BA8D4266F7092C3BA43B62"),
         ]
     )
     assert result.column(2) == pa.array(
@@ -187,33 +168,15 @@
     )
     assert result.column(3) == pa.array(
         [
-            b(
-                "F73A5FBF881F89B814871F46E26AD3FA"
-                "37CB2921C5E8561618639015B3CCBB71"
-            ),
-            b(
-                "B792A0383FB9E7A189EC150686579532"
-                "854E44B71AC394831DAED169BA85CCC5"
-            ),
-            b(
-                "27988A0E51812297C77A433F63523334"
-                "6AEE29A829DCF4F46E0F58F402C6CFCB"
-            ),
+            b("F73A5FBF881F89B814871F46E26AD3FA" "37CB2921C5E8561618639015B3CCBB71"),
+            b("B792A0383FB9E7A189EC150686579532" "854E44B71AC394831DAED169BA85CCC5"),
+            b("27988A0E51812297C77A433F63523334" "6AEE29A829DCF4F46E0F58F402C6CFCB"),
         ]
     )
     assert result.column(4) == pa.array(
         [
-            b(
-                "FBC2B0516EE8744D293B980779178A35"
-                "08850FDCFE965985782C39601B65794F"
-            ),
-            b(
-                "BF73D18575A736E4037D45F9E316085B"
-                "86C19BE6363DE6AA789E13DEAACC1C4E"
-            ),
-            b(
-                "C8D11B9F7237E4034ADBCD2005735F9B"
-                "C4C597C75AD89F4492BEC8F77D15F7EB"
-            ),
+            b("FBC2B0516EE8744D293B980779178A35" "08850FDCFE965985782C39601B65794F"),
+            b("BF73D18575A736E4037D45F9E316085B" "86C19BE6363DE6AA789E13DEAACC1C4E"),
+            b("C8D11B9F7237E4034ADBCD2005735F9B" "C4C597C75AD89F4492BEC8F77D15F7EB"),
         ]
     )
diff --git a/datafusion/tests/test_sql.py b/datafusion/tests/test_sql.py
index 19c2766..f430f32 100644
--- a/datafusion/tests/test_sql.py
+++ b/datafusion/tests/test_sql.py
@@ -72,9 +72,7 @@
     result = pa.Table.from_batches(result)
     assert result.schema == alternative_schema
 
-    with pytest.raises(
-        ValueError, match="Delimiter must be a single character"
-    ):
+    with pytest.raises(ValueError, match="Delimiter must be a single character"):
         ctx.register_csv("csv4", path, delimiter="wrong")
 
 
@@ -114,9 +112,7 @@
     )
     assert ctx.tables() == {"datapp"}
 
-    result = ctx.sql(
-        "SELECT grp, COUNT(*) AS cnt FROM datapp GROUP BY grp"
-    ).collect()
+    result = ctx.sql("SELECT grp, COUNT(*) AS cnt FROM datapp GROUP BY grp").collect()
     result = pa.Table.from_batches(result)
 
     rd = result.to_pydict()
@@ -183,9 +179,7 @@
     ).collect()
     expected_a = pa.array([50.0219, 50.0152], pa.float64())
     expected_cast = pa.array([50, 50], pa.int32())
-    expected = [
-        pa.RecordBatch.from_arrays([expected_a, expected_cast], ["a", "a_int"])
-    ]
+    expected = [pa.RecordBatch.from_arrays([expected_a, expected_cast], ["a", "a_int"])]
     np.testing.assert_equal(expected[0].column(1), expected[0].column(1))
 
 
@@ -205,9 +199,7 @@
         "float",
     ]
 
-    select = ", ".join(
-        [f"CAST(9 AS {t}) AS A{i}" for i, t in enumerate(valid_types)]
-    )
+    select = ", ".join([f"CAST(9 AS {t}) AS A{i}" for i, t in enumerate(valid_types)])
 
     # can execute, which implies that we can cast
     ctx.sql(f"SELECT {select} FROM t").collect()
@@ -236,14 +228,10 @@
     ctx, tmp_path, fn, input_types, output_type, input_values, expected_values
 ):
     # write to disk
-    path = helpers.write_parquet(
-        tmp_path / "a.parquet", pa.array(input_values)
-    )
+    path = helpers.write_parquet(tmp_path / "a.parquet", pa.array(input_values))
     ctx.register_parquet("t", path)
 
-    func = udf(
-        fn, input_types, output_type, name="func", volatility="immutable"
-    )
+    func = udf(fn, input_types, output_type, name="func", volatility="immutable")
     ctx.register_udf(func)
 
     batches = ctx.sql("SELECT func(a) AS tt FROM t").collect()
diff --git a/dev/release/check-rat-report.py b/dev/release/check-rat-report.py
index 30a0111..d3dd7c5 100644
--- a/dev/release/check-rat-report.py
+++ b/dev/release/check-rat-report.py
@@ -23,9 +23,7 @@
 import xml.etree.ElementTree as ET
 
 if len(sys.argv) != 3:
-    sys.stderr.write(
-        "Usage: %s exclude_globs.lst rat_report.xml\n" % sys.argv[0]
-    )
+    sys.stderr.write("Usage: %s exclude_globs.lst rat_report.xml\n" % sys.argv[0])
     sys.exit(1)
 
 exclude_globs_filename = sys.argv[1]