| /* |
| * Tiny float64 printing and parsing library |
| * |
| * Copyright (c) 2024 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdarg.h> |
| #include <inttypes.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <ctype.h> |
| #include <sys/time.h> |
| #include <math.h> |
| #include <setjmp.h> |
| |
| #include "cutils.h" |
| #include "dtoa.h" |
| |
| /* |
| TODO: |
| - test n_digits=101 instead of 100 |
| - simplify subnormal handling |
| - reduce max memory usage |
| - free format: could add shortcut if exact result |
| - use 64 bit limb_t when possible |
| - use another algorithm for free format dtoa in base 10 (ryu ?) |
| */ |
| |
| #define USE_POW5_TABLE |
| /* use fast path to print small integers in free format */ |
| #define USE_FAST_INT |
| |
| #define LIMB_LOG2_BITS 5 |
| |
| #define LIMB_BITS (1 << LIMB_LOG2_BITS) |
| |
| typedef int32_t slimb_t; |
| typedef uint32_t limb_t; |
| typedef uint64_t dlimb_t; |
| |
| #define LIMB_DIGITS 9 |
| |
| #define JS_RADIX_MAX 36 |
| |
| #define DBIGNUM_LEN_MAX 52 /* ~ 2^(1072+53)*36^100 (dtoa) */ |
| #define MANT_LEN_MAX 18 /* < 36^100 */ |
| |
| typedef intptr_t mp_size_t; |
| |
| /* the represented number is sum(i, tab[i]*2^(LIMB_BITS * i)) */ |
| typedef struct { |
| int len; /* >= 1 */ |
| limb_t tab[]; |
| } mpb_t; |
| |
| static limb_t mp_add_ui(limb_t *tab, limb_t b, size_t n) |
| { |
| size_t i; |
| limb_t k, a; |
| |
| k=b; |
| for(i=0;i<n;i++) { |
| if (k == 0) |
| break; |
| a = tab[i] + k; |
| k = (a < k); |
| tab[i] = a; |
| } |
| return k; |
| } |
| |
| /* tabr[] = taba[] * b + l. Return the high carry */ |
| static limb_t mp_mul1(limb_t *tabr, const limb_t *taba, limb_t n, |
| limb_t b, limb_t l) |
| { |
| limb_t i; |
| dlimb_t t; |
| |
| for(i = 0; i < n; i++) { |
| t = (dlimb_t)taba[i] * (dlimb_t)b + l; |
| tabr[i] = t; |
| l = t >> LIMB_BITS; |
| } |
| return l; |
| } |
| |
| /* WARNING: d must be >= 2^(LIMB_BITS-1) */ |
| static inline limb_t udiv1norm_init(limb_t d) |
| { |
| limb_t a0, a1; |
| a1 = -d - 1; |
| a0 = -1; |
| return (((dlimb_t)a1 << LIMB_BITS) | a0) / d; |
| } |
| |
| /* return the quotient and the remainder in '*pr'of 'a1*2^LIMB_BITS+a0 |
| / d' with 0 <= a1 < d. */ |
| static inline limb_t udiv1norm(limb_t *pr, limb_t a1, limb_t a0, |
| limb_t d, limb_t d_inv) |
| { |
| limb_t n1m, n_adj, q, r, ah; |
| dlimb_t a; |
| n1m = ((slimb_t)a0 >> (LIMB_BITS - 1)); |
| n_adj = a0 + (n1m & d); |
| a = (dlimb_t)d_inv * (a1 - n1m) + n_adj; |
| q = (a >> LIMB_BITS) + a1; |
| /* compute a - q * r and update q so that the remainder is between |
| 0 and d - 1 */ |
| a = ((dlimb_t)a1 << LIMB_BITS) | a0; |
| a = a - (dlimb_t)q * d - d; |
| ah = a >> LIMB_BITS; |
| q += 1 + ah; |
| r = (limb_t)a + (ah & d); |
| *pr = r; |
| return q; |
| } |
| |
| static limb_t mp_div1(limb_t *tabr, const limb_t *taba, limb_t n, |
| limb_t b, limb_t r) |
| { |
| slimb_t i; |
| dlimb_t a1; |
| for(i = n - 1; i >= 0; i--) { |
| a1 = ((dlimb_t)r << LIMB_BITS) | taba[i]; |
| tabr[i] = a1 / b; |
| r = a1 % b; |
| } |
| return r; |
| } |
| |
| /* r = (a + high*B^n) >> shift. Return the remainder r (0 <= r < 2^shift). |
| 1 <= shift <= LIMB_BITS - 1 */ |
| static limb_t mp_shr(limb_t *tab_r, const limb_t *tab, mp_size_t n, |
| int shift, limb_t high) |
| { |
| mp_size_t i; |
| limb_t l, a; |
| |
| assert(shift >= 1 && shift < LIMB_BITS); |
| l = high; |
| for(i = n - 1; i >= 0; i--) { |
| a = tab[i]; |
| tab_r[i] = (a >> shift) | (l << (LIMB_BITS - shift)); |
| l = a; |
| } |
| return l & (((limb_t)1 << shift) - 1); |
| } |
| |
| /* r = (a << shift) + low. 1 <= shift <= LIMB_BITS - 1, 0 <= low < |
| 2^shift. */ |
| static limb_t mp_shl(limb_t *tab_r, const limb_t *tab, mp_size_t n, |
| int shift, limb_t low) |
| { |
| mp_size_t i; |
| limb_t l, a; |
| |
| assert(shift >= 1 && shift < LIMB_BITS); |
| l = low; |
| for(i = 0; i < n; i++) { |
| a = tab[i]; |
| tab_r[i] = (a << shift) | l; |
| l = (a >> (LIMB_BITS - shift)); |
| } |
| return l; |
| } |
| |
| static no_inline limb_t mp_div1norm(limb_t *tabr, const limb_t *taba, limb_t n, |
| limb_t b, limb_t r, limb_t b_inv, int shift) |
| { |
| slimb_t i; |
| |
| if (shift != 0) { |
| r = (r << shift) | mp_shl(tabr, taba, n, shift, 0); |
| } |
| for(i = n - 1; i >= 0; i--) { |
| tabr[i] = udiv1norm(&r, r, taba[i], b, b_inv); |
| } |
| r >>= shift; |
| return r; |
| } |
| |
| static __maybe_unused void mpb_dump(const char *str, const mpb_t *a) |
| { |
| int i; |
| |
| printf("%s= 0x", str); |
| for(i = a->len - 1; i >= 0; i--) { |
| printf("%08x", a->tab[i]); |
| if (i != 0) |
| printf("_"); |
| } |
| printf("\n"); |
| } |
| |
| static void mpb_renorm(mpb_t *r) |
| { |
| while (r->len > 1 && r->tab[r->len - 1] == 0) |
| r->len--; |
| } |
| |
| #ifdef USE_POW5_TABLE |
| static const uint32_t pow5_table[17] = { |
| 0x00000005, 0x00000019, 0x0000007d, 0x00000271, |
| 0x00000c35, 0x00003d09, 0x0001312d, 0x0005f5e1, |
| 0x001dcd65, 0x009502f9, 0x02e90edd, 0x0e8d4a51, |
| 0x48c27395, 0x6bcc41e9, 0x1afd498d, 0x86f26fc1, |
| 0xa2bc2ec5, |
| }; |
| |
| static const uint8_t pow5h_table[4] = { |
| 0x00000001, 0x00000007, 0x00000023, 0x000000b1, |
| }; |
| |
| static const uint32_t pow5_inv_table[13] = { |
| 0x99999999, 0x47ae147a, 0x0624dd2f, 0xa36e2eb1, |
| 0x4f8b588e, 0x0c6f7a0b, 0xad7f29ab, 0x5798ee23, |
| 0x12e0be82, 0xb7cdfd9d, 0x5fd7fe17, 0x19799812, |
| 0xc25c2684, |
| }; |
| #endif |
| |
| /* return a^b */ |
| static uint64_t pow_ui(uint32_t a, uint32_t b) |
| { |
| int i, n_bits; |
| uint64_t r; |
| if (b == 0) |
| return 1; |
| if (b == 1) |
| return a; |
| #ifdef USE_POW5_TABLE |
| if ((a == 5 || a == 10) && b <= 17) { |
| r = pow5_table[b - 1]; |
| if (b >= 14) { |
| r |= (uint64_t)pow5h_table[b - 14] << 32; |
| } |
| if (a == 10) |
| r <<= b; |
| return r; |
| } |
| #endif |
| r = a; |
| n_bits = 32 - clz32(b); |
| for(i = n_bits - 2; i >= 0; i--) { |
| r *= r; |
| if ((b >> i) & 1) |
| r *= a; |
| } |
| return r; |
| } |
| |
| static uint32_t pow_ui_inv(uint32_t *pr_inv, int *pshift, uint32_t a, uint32_t b) |
| { |
| uint32_t r_inv, r; |
| int shift; |
| #ifdef USE_POW5_TABLE |
| if (a == 5 && b >= 1 && b <= 13) { |
| r = pow5_table[b - 1]; |
| shift = clz32(r); |
| r <<= shift; |
| r_inv = pow5_inv_table[b - 1]; |
| } else |
| #endif |
| { |
| r = pow_ui(a, b); |
| shift = clz32(r); |
| r <<= shift; |
| r_inv = udiv1norm_init(r); |
| } |
| *pshift = shift; |
| *pr_inv = r_inv; |
| return r; |
| } |
| |
| enum { |
| JS_RNDN, /* round to nearest, ties to even */ |
| JS_RNDNA, /* round to nearest, ties away from zero */ |
| JS_RNDZ, |
| }; |
| |
| static int mpb_get_bit(const mpb_t *r, int k) |
| { |
| int l; |
| |
| l = (unsigned)k / LIMB_BITS; |
| k = k & (LIMB_BITS - 1); |
| if (l >= r->len) |
| return 0; |
| else |
| return (r->tab[l] >> k) & 1; |
| } |
| |
| /* compute round(r / 2^shift). 'shift' can be negative */ |
| static void mpb_shr_round(mpb_t *r, int shift, int rnd_mode) |
| { |
| int l, i; |
| |
| if (shift == 0) |
| return; |
| if (shift < 0) { |
| shift = -shift; |
| l = (unsigned)shift / LIMB_BITS; |
| shift = shift & (LIMB_BITS - 1); |
| if (shift != 0) { |
| r->tab[r->len] = mp_shl(r->tab, r->tab, r->len, shift, 0); |
| r->len++; |
| mpb_renorm(r); |
| } |
| if (l > 0) { |
| for(i = r->len - 1; i >= 0; i--) |
| r->tab[i + l] = r->tab[i]; |
| for(i = 0; i < l; i++) |
| r->tab[i] = 0; |
| r->len += l; |
| } |
| } else { |
| limb_t bit1, bit2; |
| int k, add_one; |
| |
| switch(rnd_mode) { |
| default: |
| case JS_RNDZ: |
| add_one = 0; |
| break; |
| case JS_RNDN: |
| case JS_RNDNA: |
| bit1 = mpb_get_bit(r, shift - 1); |
| if (bit1) { |
| if (rnd_mode == JS_RNDNA) { |
| bit2 = 1; |
| } else { |
| /* bit2 = oring of all the bits after bit1 */ |
| bit2 = 0; |
| if (shift >= 2) { |
| k = shift - 1; |
| l = (unsigned)k / LIMB_BITS; |
| k = k & (LIMB_BITS - 1); |
| for(i = 0; i < min_int(l, r->len); i++) |
| bit2 |= r->tab[i]; |
| if (l < r->len) |
| bit2 |= r->tab[l] & (((limb_t)1 << k) - 1); |
| } |
| } |
| if (bit2) { |
| add_one = 1; |
| } else { |
| /* round to even */ |
| add_one = mpb_get_bit(r, shift); |
| } |
| } else { |
| add_one = 0; |
| } |
| break; |
| } |
| |
| l = (unsigned)shift / LIMB_BITS; |
| shift = shift & (LIMB_BITS - 1); |
| if (l >= r->len) { |
| r->len = 1; |
| r->tab[0] = add_one; |
| } else { |
| if (l > 0) { |
| r->len -= l; |
| for(i = 0; i < r->len; i++) |
| r->tab[i] = r->tab[i + l]; |
| } |
| if (shift != 0) { |
| mp_shr(r->tab, r->tab, r->len, shift, 0); |
| mpb_renorm(r); |
| } |
| if (add_one) { |
| limb_t a; |
| a = mp_add_ui(r->tab, 1, r->len); |
| if (a) |
| r->tab[r->len++] = a; |
| } |
| } |
| } |
| } |
| |
| /* return -1, 0 or 1 */ |
| static int mpb_cmp(const mpb_t *a, const mpb_t *b) |
| { |
| mp_size_t i; |
| if (a->len < b->len) |
| return -1; |
| else if (a->len > b->len) |
| return 1; |
| for(i = a->len - 1; i >= 0; i--) { |
| if (a->tab[i] != b->tab[i]) { |
| if (a->tab[i] < b->tab[i]) |
| return -1; |
| else |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static void mpb_set_u64(mpb_t *r, uint64_t m) |
| { |
| #if LIMB_BITS == 64 |
| r->tab[0] = m; |
| r->len = 1; |
| #else |
| r->tab[0] = m; |
| r->tab[1] = m >> LIMB_BITS; |
| if (r->tab[1] == 0) |
| r->len = 1; |
| else |
| r->len = 2; |
| #endif |
| } |
| |
| static uint64_t mpb_get_u64(mpb_t *r) |
| { |
| #if LIMB_BITS == 64 |
| return r->tab[0]; |
| #else |
| if (r->len == 1) { |
| return r->tab[0]; |
| } else { |
| return r->tab[0] | ((uint64_t)r->tab[1] << LIMB_BITS); |
| } |
| #endif |
| } |
| |
| /* floor_log2() = position of the first non zero bit or -1 if zero. */ |
| static int mpb_floor_log2(mpb_t *a) |
| { |
| limb_t v; |
| v = a->tab[a->len - 1]; |
| if (v == 0) |
| return -1; |
| else |
| return a->len * LIMB_BITS - 1 - clz32(v); |
| } |
| |
| #define MUL_LOG2_RADIX_BASE_LOG2 24 |
| |
| /* round((1 << MUL_LOG2_RADIX_BASE_LOG2)/log2(i + 2)) */ |
| static const uint32_t mul_log2_radix_table[JS_RADIX_MAX - 1] = { |
| 0x000000, 0xa1849d, 0x000000, 0x6e40d2, |
| 0x6308c9, 0x5b3065, 0x000000, 0x50c24e, |
| 0x4d104d, 0x4a0027, 0x4768ce, 0x452e54, |
| 0x433d00, 0x418677, 0x000000, 0x3ea16b, |
| 0x3d645a, 0x3c43c2, 0x3b3b9a, 0x3a4899, |
| 0x39680b, 0x3897b3, 0x37d5af, 0x372069, |
| 0x367686, 0x35d6df, 0x354072, 0x34b261, |
| 0x342bea, 0x33ac62, 0x000000, 0x32bfd9, |
| 0x3251dd, 0x31e8d6, 0x318465, |
| }; |
| |
| /* return floor(a / log2(radix)) for -2048 <= a <= 2047 */ |
| static int mul_log2_radix(int a, int radix) |
| { |
| int radix_bits, mult; |
| |
| if ((radix & (radix - 1)) == 0) { |
| /* if the radix is a power of two better to do it exactly */ |
| radix_bits = 31 - clz32(radix); |
| if (a < 0) |
| a -= radix_bits - 1; |
| return a / radix_bits; |
| } else { |
| mult = mul_log2_radix_table[radix - 2]; |
| return ((int64_t)a * mult) >> MUL_LOG2_RADIX_BASE_LOG2; |
| } |
| } |
| |
| #if 0 |
| static void build_mul_log2_radix_table(void) |
| { |
| int base, radix, mult, col, base_log2; |
| |
| base_log2 = 24; |
| base = 1 << base_log2; |
| col = 0; |
| for(radix = 2; radix <= 36; radix++) { |
| if ((radix & (radix - 1)) == 0) |
| mult = 0; |
| else |
| mult = lrint((double)base / log2(radix)); |
| printf("0x%06x, ", mult); |
| if (++col == 4) { |
| printf("\n"); |
| col = 0; |
| } |
| } |
| printf("\n"); |
| } |
| |
| static void mul_log2_radix_test(void) |
| { |
| int radix, i, ref, r; |
| |
| for(radix = 2; radix <= 36; radix++) { |
| for(i = -2048; i <= 2047; i++) { |
| ref = (int)floor((double)i / log2(radix)); |
| r = mul_log2_radix(i, radix); |
| if (ref != r) { |
| printf("ERROR: radix=%d i=%d r=%d ref=%d\n", |
| radix, i, r, ref); |
| exit(1); |
| } |
| } |
| } |
| if (0) |
| build_mul_log2_radix_table(); |
| } |
| #endif |
| |
| static void u32toa_len(char *buf, uint32_t n, size_t len) |
| { |
| int digit, i; |
| for(i = len - 1; i >= 0; i--) { |
| digit = n % 10; |
| n = n / 10; |
| buf[i] = digit + '0'; |
| } |
| } |
| |
| /* for power of 2 radixes. len >= 1 */ |
| static void u64toa_bin_len(char *buf, uint64_t n, unsigned int radix_bits, int len) |
| { |
| int digit, i; |
| unsigned int mask; |
| |
| mask = (1 << radix_bits) - 1; |
| for(i = len - 1; i >= 0; i--) { |
| digit = n & mask; |
| n >>= radix_bits; |
| if (digit < 10) |
| digit += '0'; |
| else |
| digit += 'a' - 10; |
| buf[i] = digit; |
| } |
| } |
| |
| /* len >= 1. 2 <= radix <= 36 */ |
| static void limb_to_a(char *buf, limb_t n, unsigned int radix, int len) |
| { |
| int digit, i; |
| |
| if (radix == 10) { |
| /* specific case with constant divisor */ |
| #if LIMB_BITS == 32 |
| u32toa_len(buf, n, len); |
| #else |
| /* XXX: optimize */ |
| for(i = len - 1; i >= 0; i--) { |
| digit = (limb_t)n % 10; |
| n = (limb_t)n / 10; |
| buf[i] = digit + '0'; |
| } |
| #endif |
| } else { |
| for(i = len - 1; i >= 0; i--) { |
| digit = (limb_t)n % radix; |
| n = (limb_t)n / radix; |
| if (digit < 10) |
| digit += '0'; |
| else |
| digit += 'a' - 10; |
| buf[i] = digit; |
| } |
| } |
| } |
| |
| size_t u32toa(char *buf, uint32_t n) |
| { |
| char buf1[10], *q; |
| size_t len; |
| |
| q = buf1 + sizeof(buf1); |
| do { |
| *--q = n % 10 + '0'; |
| n /= 10; |
| } while (n != 0); |
| len = buf1 + sizeof(buf1) - q; |
| memcpy(buf, q, len); |
| return len; |
| } |
| |
| size_t i32toa(char *buf, int32_t n) |
| { |
| if (n >= 0) { |
| return u32toa(buf, n); |
| } else { |
| buf[0] = '-'; |
| return u32toa(buf + 1, -(uint32_t)n) + 1; |
| } |
| } |
| |
| #ifdef USE_FAST_INT |
| size_t u64toa(char *buf, uint64_t n) |
| { |
| if (n < 0x100000000) { |
| return u32toa(buf, n); |
| } else { |
| uint64_t n1; |
| char *q = buf; |
| uint32_t n2; |
| |
| n1 = n / 1000000000; |
| n %= 1000000000; |
| if (n1 >= 0x100000000) { |
| n2 = n1 / 1000000000; |
| n1 = n1 % 1000000000; |
| /* at most two digits */ |
| if (n2 >= 10) { |
| *q++ = n2 / 10 + '0'; |
| n2 %= 10; |
| } |
| *q++ = n2 + '0'; |
| u32toa_len(q, n1, 9); |
| q += 9; |
| } else { |
| q += u32toa(q, n1); |
| } |
| u32toa_len(q, n, 9); |
| q += 9; |
| return q - buf; |
| } |
| } |
| |
| size_t i64toa(char *buf, int64_t n) |
| { |
| if (n >= 0) { |
| return u64toa(buf, n); |
| } else { |
| buf[0] = '-'; |
| return u64toa(buf + 1, -(uint64_t)n) + 1; |
| } |
| } |
| |
| /* XXX: only tested for 1 <= n < 2^53 */ |
| size_t u64toa_radix(char *buf, uint64_t n, unsigned int radix) |
| { |
| int radix_bits, l; |
| if (likely(radix == 10)) |
| return u64toa(buf, n); |
| if ((radix & (radix - 1)) == 0) { |
| radix_bits = 31 - clz32(radix); |
| if (n == 0) |
| l = 1; |
| else |
| l = (64 - clz64(n) + radix_bits - 1) / radix_bits; |
| u64toa_bin_len(buf, n, radix_bits, l); |
| return l; |
| } else { |
| char buf1[41], *q; /* maximum length for radix = 3 */ |
| size_t len; |
| int digit; |
| q = buf1 + sizeof(buf1); |
| do { |
| digit = n % radix; |
| n /= radix; |
| if (digit < 10) |
| digit += '0'; |
| else |
| digit += 'a' - 10; |
| *--q = digit; |
| } while (n != 0); |
| len = buf1 + sizeof(buf1) - q; |
| memcpy(buf, q, len); |
| return len; |
| } |
| } |
| |
| size_t i64toa_radix(char *buf, int64_t n, unsigned int radix) |
| { |
| if (n >= 0) { |
| return u64toa_radix(buf, n, radix); |
| } else { |
| buf[0] = '-'; |
| return u64toa_radix(buf + 1, -(uint64_t)n, radix) + 1; |
| } |
| } |
| #endif /* USE_FAST_INT */ |
| |
| static const uint8_t digits_per_limb_table[JS_RADIX_MAX - 1] = { |
| #if LIMB_BITS == 32 |
| 32,20,16,13,12,11,10,10, 9, 9, 8, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| #else |
| 64,40,32,27,24,22,21,20,19,18,17,17,16,16,16,15,15,15,14,14,14,14,13,13,13,13,13,13,13,12,12,12,12,12,12, |
| #endif |
| }; |
| |
| static const uint32_t radix_base_table[JS_RADIX_MAX - 1] = { |
| 0x00000000, 0xcfd41b91, 0x00000000, 0x48c27395, |
| 0x81bf1000, 0x75db9c97, 0x40000000, 0xcfd41b91, |
| 0x3b9aca00, 0x8c8b6d2b, 0x19a10000, 0x309f1021, |
| 0x57f6c100, 0x98c29b81, 0x00000000, 0x18754571, |
| 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d, |
| 0x94ace180, 0xcaf18367, 0x0b640000, 0x0e8d4a51, |
| 0x1269ae40, 0x17179149, 0x1cb91000, 0x23744899, |
| 0x2b73a840, 0x34e63b41, 0x40000000, 0x4cfa3cc1, |
| 0x5c13d840, 0x6d91b519, 0x81bf1000, |
| }; |
| |
| /* XXX: remove the table ? */ |
| static uint8_t dtoa_max_digits_table[JS_RADIX_MAX - 1] = { |
| 54, 35, 28, 24, 22, 20, 19, 18, 17, 17, 16, 16, 15, 15, 15, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12, |
| }; |
| |
| /* we limit the maximum number of significant digits for atod to about |
| 128 bits of precision for non power of two bases. The only |
| requirement for Javascript is at least 20 digits in base 10. For |
| power of two bases, we do an exact rounding in all the cases. */ |
| static uint8_t atod_max_digits_table[JS_RADIX_MAX - 1] = { |
| 64, 80, 32, 55, 49, 45, 21, 40, 38, 37, 35, 34, 33, 32, 16, 31, 30, 30, 29, 29, 28, 28, 27, 27, 27, 26, 26, 26, 26, 25, 12, 25, 25, 24, 24, |
| }; |
| |
| /* if abs(d) >= B^max_exponent, it is an overflow */ |
| static const int16_t max_exponent[JS_RADIX_MAX - 1] = { |
| 1024, 647, 512, 442, 397, 365, 342, 324, |
| 309, 297, 286, 277, 269, 263, 256, 251, |
| 246, 242, 237, 234, 230, 227, 224, 221, |
| 218, 216, 214, 211, 209, 207, 205, 203, |
| 202, 200, 199, |
| }; |
| |
| /* if abs(d) <= B^min_exponent, it is an underflow */ |
| static const int16_t min_exponent[JS_RADIX_MAX - 1] = { |
| -1075, -679, -538, -463, -416, -383, -359, -340, |
| -324, -311, -300, -291, -283, -276, -269, -263, |
| -258, -254, -249, -245, -242, -238, -235, -232, |
| -229, -227, -224, -222, -220, -217, -215, -214, |
| -212, -210, -208, |
| }; |
| |
| #if 0 |
| void build_tables(void) |
| { |
| int r, j, radix, n, col, i; |
| |
| /* radix_base_table */ |
| for(radix = 2; radix <= 36; radix++) { |
| r = 1; |
| for(j = 0; j < digits_per_limb_table[radix - 2]; j++) { |
| r *= radix; |
| } |
| printf(" 0x%08x,", r); |
| if ((radix % 4) == 1) |
| printf("\n"); |
| } |
| printf("\n"); |
| |
| /* dtoa_max_digits_table */ |
| for(radix = 2; radix <= 36; radix++) { |
| /* Note: over estimated when the radix is a power of two */ |
| printf(" %d,", 1 + (int)ceil(53.0 / log2(radix))); |
| } |
| printf("\n"); |
| |
| /* atod_max_digits_table */ |
| for(radix = 2; radix <= 36; radix++) { |
| if ((radix & (radix - 1)) == 0) { |
| /* 64 bits is more than enough */ |
| n = (int)floor(64.0 / log2(radix)); |
| } else { |
| n = (int)floor(128.0 / log2(radix)); |
| } |
| printf(" %d,", n); |
| } |
| printf("\n"); |
| |
| printf("static const int16_t max_exponent[JS_RADIX_MAX - 1] = {\n"); |
| col = 0; |
| for(radix = 2; radix <= 36; radix++) { |
| printf("%5d, ", (int)ceil(1024 / log2(radix))); |
| if (++col == 8) { |
| col = 0; |
| printf("\n"); |
| } |
| } |
| printf("\n};\n\n"); |
| |
| printf("static const int16_t min_exponent[JS_RADIX_MAX - 1] = {\n"); |
| col = 0; |
| for(radix = 2; radix <= 36; radix++) { |
| printf("%5d, ", (int)floor(-1075 / log2(radix))); |
| if (++col == 8) { |
| col = 0; |
| printf("\n"); |
| } |
| } |
| printf("\n};\n\n"); |
| |
| printf("static const uint32_t pow5_table[16] = {\n"); |
| col = 0; |
| for(i = 2; i <= 17; i++) { |
| r = 1; |
| for(j = 0; j < i; j++) { |
| r *= 5; |
| } |
| printf("0x%08x, ", r); |
| if (++col == 4) { |
| col = 0; |
| printf("\n"); |
| } |
| } |
| printf("\n};\n\n"); |
| |
| /* high part */ |
| printf("static const uint8_t pow5h_table[4] = {\n"); |
| col = 0; |
| for(i = 14; i <= 17; i++) { |
| uint64_t r1; |
| r1 = 1; |
| for(j = 0; j < i; j++) { |
| r1 *= 5; |
| } |
| printf("0x%08x, ", (uint32_t)(r1 >> 32)); |
| if (++col == 4) { |
| col = 0; |
| printf("\n"); |
| } |
| } |
| printf("\n};\n\n"); |
| } |
| #endif |
| |
| /* n_digits >= 1. 0 <= dot_pos <= n_digits. If dot_pos == n_digits, |
| the dot is not displayed. 'a' is modified. */ |
| static int output_digits(char *buf, |
| mpb_t *a, int radix, int n_digits1, |
| int dot_pos) |
| { |
| int n_digits, digits_per_limb, radix_bits, n, len; |
| |
| n_digits = n_digits1; |
| if ((radix & (radix - 1)) == 0) { |
| /* radix = 2^radix_bits */ |
| radix_bits = 31 - clz32(radix); |
| } else { |
| radix_bits = 0; |
| } |
| digits_per_limb = digits_per_limb_table[radix - 2]; |
| if (radix_bits != 0) { |
| for(;;) { |
| n = min_int(n_digits, digits_per_limb); |
| n_digits -= n; |
| u64toa_bin_len(buf + n_digits, a->tab[0], radix_bits, n); |
| if (n_digits == 0) |
| break; |
| mpb_shr_round(a, digits_per_limb * radix_bits, JS_RNDZ); |
| } |
| } else { |
| limb_t r; |
| while (n_digits != 0) { |
| n = min_int(n_digits, digits_per_limb); |
| n_digits -= n; |
| r = mp_div1(a->tab, a->tab, a->len, radix_base_table[radix - 2], 0); |
| mpb_renorm(a); |
| limb_to_a(buf + n_digits, r, radix, n); |
| } |
| } |
| |
| /* add the dot */ |
| len = n_digits1; |
| if (dot_pos != n_digits1) { |
| memmove(buf + dot_pos + 1, buf + dot_pos, n_digits1 - dot_pos); |
| buf[dot_pos] = '.'; |
| len++; |
| } |
| return len; |
| } |
| |
| /* return (a, e_offset) such that a = a * (radix1*2^radix_shift)^f * |
| 2^-e_offset. 'f' can be negative. */ |
| static int mul_pow(mpb_t *a, int radix1, int radix_shift, int f, BOOL is_int, int e) |
| { |
| int e_offset, d, n, n0; |
| |
| e_offset = -f * radix_shift; |
| if (radix1 != 1) { |
| d = digits_per_limb_table[radix1 - 2]; |
| if (f >= 0) { |
| limb_t h, b; |
| |
| b = 0; |
| n0 = 0; |
| while (f != 0) { |
| n = min_int(f, d); |
| if (n != n0) { |
| b = pow_ui(radix1, n); |
| n0 = n; |
| } |
| h = mp_mul1(a->tab, a->tab, a->len, b, 0); |
| if (h != 0) { |
| a->tab[a->len++] = h; |
| } |
| f -= n; |
| } |
| } else { |
| int extra_bits, l, shift; |
| limb_t r, rem, b, b_inv; |
| |
| f = -f; |
| l = (f + d - 1) / d; /* high bound for the number of limbs (XXX: make it better) */ |
| e_offset += l * LIMB_BITS; |
| if (!is_int) { |
| /* at least 'e' bits are needed in the final result for rounding */ |
| extra_bits = max_int(e - mpb_floor_log2(a), 0); |
| } else { |
| /* at least two extra bits are needed in the final result |
| for rounding */ |
| extra_bits = max_int(2 + e - e_offset, 0); |
| } |
| e_offset += extra_bits; |
| mpb_shr_round(a, -(l * LIMB_BITS + extra_bits), JS_RNDZ); |
| |
| b = 0; |
| b_inv = 0; |
| shift = 0; |
| n0 = 0; |
| rem = 0; |
| while (f != 0) { |
| n = min_int(f, d); |
| if (n != n0) { |
| b = pow_ui_inv(&b_inv, &shift, radix1, n); |
| n0 = n; |
| } |
| r = mp_div1norm(a->tab, a->tab, a->len, b, 0, b_inv, shift); |
| rem |= r; |
| mpb_renorm(a); |
| f -= n; |
| } |
| /* if the remainder is non zero, use it for rounding */ |
| a->tab[0] |= (rem != 0); |
| } |
| } |
| return e_offset; |
| } |
| |
| /* tmp1 = round(m*2^e*radix^f). 'tmp0' is a temporary storage */ |
| static void mul_pow_round(mpb_t *tmp1, uint64_t m, int e, int radix1, int radix_shift, int f, |
| int rnd_mode) |
| { |
| int e_offset; |
| |
| mpb_set_u64(tmp1, m); |
| e_offset = mul_pow(tmp1, radix1, radix_shift, f, TRUE, e); |
| mpb_shr_round(tmp1, -e + e_offset, rnd_mode); |
| } |
| |
| /* return round(a*2^e_offset) rounded as a float64. 'a' is modified */ |
| static uint64_t round_to_d(int *pe, mpb_t *a, int e_offset, int rnd_mode) |
| { |
| int e; |
| uint64_t m; |
| |
| if (a->tab[0] == 0 && a->len == 1) { |
| /* zero result */ |
| m = 0; |
| e = 0; /* don't care */ |
| } else { |
| int prec, prec1, e_min; |
| e = mpb_floor_log2(a) + 1 - e_offset; |
| prec1 = 53; |
| e_min = -1021; |
| if (e < e_min) { |
| /* subnormal result or zero */ |
| prec = prec1 - (e_min - e); |
| } else { |
| prec = prec1; |
| } |
| mpb_shr_round(a, e + e_offset - prec, rnd_mode); |
| m = mpb_get_u64(a); |
| m <<= (53 - prec); |
| /* mantissa overflow due to rounding */ |
| if (m >= (uint64_t)1 << 53) { |
| m >>= 1; |
| e++; |
| } |
| } |
| *pe = e; |
| return m; |
| } |
| |
| /* return (m, e) such that m*2^(e-53) = round(a * radix^f) with 2^52 |
| <= m < 2^53 or m = 0. |
| 'a' is modified. */ |
| static uint64_t mul_pow_round_to_d(int *pe, mpb_t *a, |
| int radix1, int radix_shift, int f, int rnd_mode) |
| { |
| int e_offset; |
| |
| e_offset = mul_pow(a, radix1, radix_shift, f, FALSE, 55); |
| return round_to_d(pe, a, e_offset, rnd_mode); |
| } |
| |
| #ifdef JS_DTOA_DUMP_STATS |
| static int out_len_count[17]; |
| |
| void js_dtoa_dump_stats(void) |
| { |
| int i, sum; |
| sum = 0; |
| for(i = 0; i < 17; i++) |
| sum += out_len_count[i]; |
| for(i = 0; i < 17; i++) { |
| printf("%2d %8d %5.2f%%\n", |
| i + 1, out_len_count[i], (double)out_len_count[i] / sum * 100); |
| } |
| } |
| #endif |
| |
| /* return a maximum bound of the string length. The bound depends on |
| 'd' only if format = JS_DTOA_FORMAT_FRAC or if JS_DTOA_EXP_DISABLED |
| is enabled. */ |
| int js_dtoa_max_len(double d, int radix, int n_digits, int flags) |
| { |
| int fmt = flags & JS_DTOA_FORMAT_MASK; |
| int n, e; |
| uint64_t a; |
| |
| if (fmt != JS_DTOA_FORMAT_FRAC) { |
| if (fmt == JS_DTOA_FORMAT_FREE) { |
| n = dtoa_max_digits_table[radix - 2]; |
| } else { |
| n = n_digits; |
| } |
| if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_DISABLED) { |
| /* no exponential */ |
| a = float64_as_uint64(d); |
| e = (a >> 52) & 0x7ff; |
| if (e == 0x7ff) { |
| /* NaN, Infinity */ |
| n = 0; |
| } else { |
| e -= 1023; |
| /* XXX: adjust */ |
| n += 10 + abs(mul_log2_radix(e - 1, radix)); |
| } |
| } else { |
| /* extra: sign, 1 dot and exponent "e-1000" */ |
| n += 1 + 1 + 6; |
| } |
| } else { |
| a = float64_as_uint64(d); |
| e = (a >> 52) & 0x7ff; |
| if (e == 0x7ff) { |
| /* NaN, Infinity */ |
| n = 0; |
| } else { |
| /* high bound for the integer part */ |
| e -= 1023; |
| /* x < 2^(e + 1) */ |
| if (e < 0) { |
| n = 1; |
| } else { |
| n = 2 + mul_log2_radix(e - 1, radix); |
| } |
| /* sign, extra digit, 1 dot */ |
| n += 1 + 1 + 1 + n_digits; |
| } |
| } |
| return max_int(n, 9); /* also include NaN and [-]Infinity */ |
| } |
| |
| #if defined(__SANITIZE_ADDRESS__) && 0 |
| static void *dtoa_malloc(uint64_t **pptr, size_t size) |
| { |
| return malloc(size); |
| } |
| static void dtoa_free(void *ptr) |
| { |
| free(ptr); |
| } |
| #else |
| static void *dtoa_malloc(uint64_t **pptr, size_t size) |
| { |
| void *ret; |
| ret = *pptr; |
| *pptr += (size + 7) / 8; |
| return ret; |
| } |
| |
| static void dtoa_free(void *ptr) |
| { |
| } |
| #endif |
| |
| /* return the length */ |
| int js_dtoa(char *buf, double d, int radix, int n_digits, int flags, |
| JSDTOATempMem *tmp_mem) |
| { |
| uint64_t a, m, *mptr = tmp_mem->mem; |
| int e, sgn, l, E, P, i, E_max, radix1, radix_shift; |
| char *q; |
| mpb_t *tmp1, *mant_max; |
| int fmt = flags & JS_DTOA_FORMAT_MASK; |
| |
| tmp1 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX); |
| mant_max = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * MANT_LEN_MAX); |
| assert((mptr - tmp_mem->mem) <= sizeof(JSDTOATempMem) / sizeof(mptr[0])); |
| |
| radix_shift = ctz32(radix); |
| radix1 = radix >> radix_shift; |
| a = float64_as_uint64(d); |
| sgn = a >> 63; |
| e = (a >> 52) & 0x7ff; |
| m = a & (((uint64_t)1 << 52) - 1); |
| q = buf; |
| if (e == 0x7ff) { |
| if (m == 0) { |
| if (sgn) |
| *q++ = '-'; |
| memcpy(q, "Infinity", 8); |
| q += 8; |
| } else { |
| memcpy(q, "NaN", 3); |
| q += 3; |
| } |
| goto done; |
| } else if (e == 0) { |
| if (m == 0) { |
| tmp1->len = 1; |
| tmp1->tab[0] = 0; |
| E = 1; |
| if (fmt == JS_DTOA_FORMAT_FREE) |
| P = 1; |
| else if (fmt == JS_DTOA_FORMAT_FRAC) |
| P = n_digits + 1; |
| else |
| P = n_digits; |
| /* "-0" is displayed as "0" if JS_DTOA_MINUS_ZERO is not present */ |
| if (sgn && (flags & JS_DTOA_MINUS_ZERO)) |
| *q++ = '-'; |
| goto output; |
| } |
| /* denormal number: convert to a normal number */ |
| l = clz64(m) - 11; |
| e -= l - 1; |
| m <<= l; |
| } else { |
| m |= (uint64_t)1 << 52; |
| } |
| if (sgn) |
| *q++ = '-'; |
| /* remove the bias */ |
| e -= 1022; |
| /* d = 2^(e-53)*m */ |
| // printf("m=0x%016" PRIx64 " e=%d\n", m, e); |
| #ifdef USE_FAST_INT |
| if (fmt == JS_DTOA_FORMAT_FREE && |
| e >= 1 && e <= 53 && |
| (m & (((uint64_t)1 << (53 - e)) - 1)) == 0 && |
| (flags & JS_DTOA_EXP_MASK) != JS_DTOA_EXP_ENABLED) { |
| m >>= 53 - e; |
| /* 'm' is never zero */ |
| q += u64toa_radix(q, m, radix); |
| goto done; |
| } |
| #endif |
| |
| /* this choice of E implies F=round(x*B^(P-E) is such as: |
| B^(P-1) <= F < 2.B^P. */ |
| E = 1 + mul_log2_radix(e - 1, radix); |
| |
| if (fmt == JS_DTOA_FORMAT_FREE) { |
| int P_max, E0, e1, E_found, P_found; |
| uint64_t m1, mant_found, mant, mant_max1; |
| /* P_max is guarranteed to work by construction */ |
| P_max = dtoa_max_digits_table[radix - 2]; |
| E0 = E; |
| E_found = 0; |
| P_found = 0; |
| mant_found = 0; |
| /* find the minimum number of digits by successive tries */ |
| P = P_max; /* P_max is guarateed to work */ |
| for(;;) { |
| /* mant_max always fits on 64 bits */ |
| mant_max1 = pow_ui(radix, P); |
| /* compute the mantissa in base B */ |
| E = E0; |
| for(;;) { |
| /* XXX: add inexact flag */ |
| mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDN); |
| mant = mpb_get_u64(tmp1); |
| if (mant < mant_max1) |
| break; |
| E++; /* at most one iteration is possible */ |
| } |
| /* remove useless trailing zero digits */ |
| while ((mant % radix) == 0) { |
| mant /= radix; |
| P--; |
| } |
| /* garanteed to work for P = P_max */ |
| if (P_found == 0) |
| goto prec_found; |
| /* convert back to base 2 */ |
| mpb_set_u64(tmp1, mant); |
| m1 = mul_pow_round_to_d(&e1, tmp1, radix1, radix_shift, E - P, JS_RNDN); |
| // printf("P=%2d: m=0x%016" PRIx64 " e=%d m1=0x%016" PRIx64 " e1=%d\n", P, m, e, m1, e1); |
| /* Note: (m, e) is never zero here, so the exponent for m1 |
| = 0 does not matter */ |
| if (m1 == m && e1 == e) { |
| prec_found: |
| P_found = P; |
| E_found = E; |
| mant_found = mant; |
| if (P == 1) |
| break; |
| P--; /* try lower exponent */ |
| } else { |
| break; |
| } |
| } |
| P = P_found; |
| E = E_found; |
| mpb_set_u64(tmp1, mant_found); |
| #ifdef JS_DTOA_DUMP_STATS |
| if (radix == 10) { |
| out_len_count[P - 1]++; |
| } |
| #endif |
| } else if (fmt == JS_DTOA_FORMAT_FRAC) { |
| int len; |
| |
| assert(n_digits >= 0 && n_digits <= JS_DTOA_MAX_DIGITS); |
| /* P = max_int(E, 1) + n_digits; */ |
| /* frac is rounded using RNDNA */ |
| mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, n_digits, JS_RNDNA); |
| |
| /* we add one extra digit on the left and remove it if needed |
| to avoid testing if the result is < radix^P */ |
| len = output_digits(q, tmp1, radix, max_int(E + 1, 1) + n_digits, |
| max_int(E + 1, 1)); |
| if (q[0] == '0' && len >= 2 && q[1] != '.') { |
| len--; |
| memmove(q, q + 1, len); |
| } |
| q += len; |
| goto done; |
| } else { |
| int pow_shift; |
| assert(n_digits >= 1 && n_digits <= JS_DTOA_MAX_DIGITS); |
| P = n_digits; |
| /* mant_max = radix^P */ |
| mant_max->len = 1; |
| mant_max->tab[0] = 1; |
| pow_shift = mul_pow(mant_max, radix1, radix_shift, P, FALSE, 0); |
| mpb_shr_round(mant_max, pow_shift, JS_RNDZ); |
| |
| for(;;) { |
| /* fixed and frac are rounded using RNDNA */ |
| mul_pow_round(tmp1, m, e - 53, radix1, radix_shift, P - E, JS_RNDNA); |
| if (mpb_cmp(tmp1, mant_max) < 0) |
| break; |
| E++; /* at most one iteration is possible */ |
| } |
| } |
| output: |
| if (fmt == JS_DTOA_FORMAT_FIXED) |
| E_max = n_digits; |
| else |
| E_max = dtoa_max_digits_table[radix - 2] + 4; |
| if ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_ENABLED || |
| ((flags & JS_DTOA_EXP_MASK) == JS_DTOA_EXP_AUTO && (E <= -6 || E > E_max))) { |
| q += output_digits(q, tmp1, radix, P, 1); |
| E--; |
| if (radix == 10) { |
| *q++ = 'e'; |
| } else if (radix1 == 1 && radix_shift <= 4) { |
| E *= radix_shift; |
| *q++ = 'p'; |
| } else { |
| *q++ = '@'; |
| } |
| if (E < 0) { |
| *q++ = '-'; |
| E = -E; |
| } else { |
| *q++ = '+'; |
| } |
| q += u32toa(q, E); |
| } else if (E <= 0) { |
| *q++ = '0'; |
| *q++ = '.'; |
| for(i = 0; i < -E; i++) |
| *q++ = '0'; |
| q += output_digits(q, tmp1, radix, P, P); |
| } else { |
| q += output_digits(q, tmp1, radix, P, min_int(P, E)); |
| for(i = 0; i < E - P; i++) |
| *q++ = '0'; |
| } |
| done: |
| *q = '\0'; |
| dtoa_free(mant_max); |
| dtoa_free(tmp1); |
| return q - buf; |
| } |
| |
| static inline int to_digit(int c) |
| { |
| if (c >= '0' && c <= '9') |
| return c - '0'; |
| else if (c >= 'A' && c <= 'Z') |
| return c - 'A' + 10; |
| else if (c >= 'a' && c <= 'z') |
| return c - 'a' + 10; |
| else |
| return 36; |
| } |
| |
| /* r = r * radix_base + a. radix_base = 0 means radix_base = 2^32 */ |
| static void mpb_mul1_base(mpb_t *r, limb_t radix_base, limb_t a) |
| { |
| int i; |
| if (r->tab[0] == 0 && r->len == 1) { |
| r->tab[0] = a; |
| } else { |
| if (radix_base == 0) { |
| for(i = r->len; i >= 0; i--) { |
| r->tab[i + 1] = r->tab[i]; |
| } |
| r->tab[0] = a; |
| } else { |
| r->tab[r->len] = mp_mul1(r->tab, r->tab, r->len, |
| radix_base, a); |
| } |
| r->len++; |
| mpb_renorm(r); |
| } |
| } |
| |
| /* XXX: add fast path for small integers */ |
| double js_atod(const char *str, const char **pnext, int radix, int flags, |
| JSATODTempMem *tmp_mem) |
| { |
| uint64_t *mptr = tmp_mem->mem; |
| const char *p, *p_start; |
| limb_t cur_limb, radix_base, extra_digits; |
| int is_neg, digit_count, limb_digit_count, digits_per_limb, sep, radix1, radix_shift; |
| int radix_bits, expn, e, max_digits, expn_offset, dot_pos, sig_pos, pos; |
| mpb_t *tmp0; |
| double dval; |
| BOOL is_bin_exp, is_zero, expn_overflow; |
| uint64_t m, a; |
| |
| tmp0 = dtoa_malloc(&mptr, sizeof(mpb_t) + sizeof(limb_t) * DBIGNUM_LEN_MAX); |
| assert((mptr - tmp_mem->mem) <= sizeof(JSATODTempMem) / sizeof(mptr[0])); |
| /* optional separator between digits */ |
| sep = (flags & JS_ATOD_ACCEPT_UNDERSCORES) ? '_' : 256; |
| |
| p = str; |
| is_neg = 0; |
| if (p[0] == '+') { |
| p++; |
| p_start = p; |
| } else if (p[0] == '-') { |
| is_neg = 1; |
| p++; |
| p_start = p; |
| } else { |
| p_start = p; |
| } |
| |
| if (p[0] == '0') { |
| if ((p[1] == 'x' || p[1] == 'X') && |
| (radix == 0 || radix == 16)) { |
| p += 2; |
| radix = 16; |
| } else if ((p[1] == 'o' || p[1] == 'O') && |
| radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) { |
| p += 2; |
| radix = 8; |
| } else if ((p[1] == 'b' || p[1] == 'B') && |
| radix == 0 && (flags & JS_ATOD_ACCEPT_BIN_OCT)) { |
| p += 2; |
| radix = 2; |
| } else if ((p[1] >= '0' && p[1] <= '9') && |
| radix == 0 && (flags & JS_ATOD_ACCEPT_LEGACY_OCTAL)) { |
| int i; |
| sep = 256; |
| for (i = 1; (p[i] >= '0' && p[i] <= '7'); i++) |
| continue; |
| if (p[i] == '8' || p[i] == '9') |
| goto no_prefix; |
| p += 1; |
| radix = 8; |
| } else { |
| goto no_prefix; |
| } |
| /* there must be a digit after the prefix */ |
| if (to_digit((uint8_t)*p) >= radix) |
| goto fail; |
| no_prefix: ; |
| } else { |
| if (!(flags & JS_ATOD_INT_ONLY) && strstart(p, "Infinity", &p)) |
| goto overflow; |
| } |
| if (radix == 0) |
| radix = 10; |
| |
| cur_limb = 0; |
| expn_offset = 0; |
| digit_count = 0; |
| limb_digit_count = 0; |
| max_digits = atod_max_digits_table[radix - 2]; |
| digits_per_limb = digits_per_limb_table[radix - 2]; |
| radix_base = radix_base_table[radix - 2]; |
| radix_shift = ctz32(radix); |
| radix1 = radix >> radix_shift; |
| if (radix1 == 1) { |
| /* radix = 2^radix_bits */ |
| radix_bits = radix_shift; |
| } else { |
| radix_bits = 0; |
| } |
| tmp0->len = 1; |
| tmp0->tab[0] = 0; |
| extra_digits = 0; |
| pos = 0; |
| dot_pos = -1; |
| /* skip leading zeros */ |
| for(;;) { |
| if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) && |
| !(flags & JS_ATOD_INT_ONLY)) { |
| if (*p == sep) |
| goto fail; |
| if (dot_pos >= 0) |
| break; |
| dot_pos = pos; |
| p++; |
| } |
| if (*p == sep && p > p_start && p[1] == '0') |
| p++; |
| if (*p != '0') |
| break; |
| p++; |
| pos++; |
| } |
| |
| sig_pos = pos; |
| for(;;) { |
| limb_t c; |
| if (*p == '.' && (p > p_start || to_digit(p[1]) < radix) && |
| !(flags & JS_ATOD_INT_ONLY)) { |
| if (*p == sep) |
| goto fail; |
| if (dot_pos >= 0) |
| break; |
| dot_pos = pos; |
| p++; |
| } |
| if (*p == sep && p > p_start && to_digit(p[1]) < radix) |
| p++; |
| c = to_digit(*p); |
| if (c >= radix) |
| break; |
| p++; |
| pos++; |
| if (digit_count < max_digits) { |
| /* XXX: could be faster when radix_bits != 0 */ |
| cur_limb = cur_limb * radix + c; |
| limb_digit_count++; |
| if (limb_digit_count == digits_per_limb) { |
| mpb_mul1_base(tmp0, radix_base, cur_limb); |
| cur_limb = 0; |
| limb_digit_count = 0; |
| } |
| digit_count++; |
| } else { |
| extra_digits |= c; |
| } |
| } |
| if (limb_digit_count != 0) { |
| mpb_mul1_base(tmp0, pow_ui(radix, limb_digit_count), cur_limb); |
| } |
| if (digit_count == 0) { |
| is_zero = TRUE; |
| expn_offset = 0; |
| } else { |
| is_zero = FALSE; |
| if (dot_pos < 0) |
| dot_pos = pos; |
| expn_offset = sig_pos + digit_count - dot_pos; |
| } |
| |
| /* Use the extra digits for rounding if the base is a power of |
| two. Otherwise they are just truncated. */ |
| if (radix_bits != 0 && extra_digits != 0) { |
| tmp0->tab[0] |= 1; |
| } |
| |
| /* parse the exponent, if any */ |
| expn = 0; |
| expn_overflow = FALSE; |
| is_bin_exp = FALSE; |
| if (!(flags & JS_ATOD_INT_ONLY) && |
| ((radix == 10 && (*p == 'e' || *p == 'E')) || |
| (radix != 10 && (*p == '@' || |
| (radix_bits >= 1 && radix_bits <= 4 && (*p == 'p' || *p == 'P'))))) && |
| p > p_start) { |
| BOOL exp_is_neg; |
| int c; |
| is_bin_exp = (*p == 'p' || *p == 'P'); |
| p++; |
| exp_is_neg = 0; |
| if (*p == '+') { |
| p++; |
| } else if (*p == '-') { |
| exp_is_neg = 1; |
| p++; |
| } |
| c = to_digit(*p); |
| if (c >= 10) |
| goto fail; /* XXX: could stop before the exponent part */ |
| expn = c; |
| p++; |
| for(;;) { |
| if (*p == sep && to_digit(p[1]) < 10) |
| p++; |
| c = to_digit(*p); |
| if (c >= 10) |
| break; |
| if (!expn_overflow) { |
| if (unlikely(expn > ((INT32_MAX - 2 - 9) / 10))) { |
| expn_overflow = TRUE; |
| } else { |
| expn = expn * 10 + c; |
| } |
| } |
| p++; |
| } |
| if (exp_is_neg) |
| expn = -expn; |
| /* if zero result, the exponent can be arbitrarily large */ |
| if (!is_zero && expn_overflow) { |
| if (exp_is_neg) |
| a = 0; |
| else |
| a = (uint64_t)0x7ff << 52; /* infinity */ |
| goto done; |
| } |
| } |
| |
| if (p == p_start) |
| goto fail; |
| |
| if (is_zero) { |
| a = 0; |
| } else { |
| int expn1; |
| if (radix_bits != 0) { |
| if (!is_bin_exp) |
| expn *= radix_bits; |
| expn -= expn_offset * radix_bits; |
| expn1 = expn + digit_count * radix_bits; |
| if (expn1 >= 1024 + radix_bits) |
| goto overflow; |
| else if (expn1 <= -1075) |
| goto underflow; |
| m = round_to_d(&e, tmp0, -expn, JS_RNDN); |
| } else { |
| expn -= expn_offset; |
| expn1 = expn + digit_count; |
| if (expn1 >= max_exponent[radix - 2] + 1) |
| goto overflow; |
| else if (expn1 <= min_exponent[radix - 2]) |
| goto underflow; |
| m = mul_pow_round_to_d(&e, tmp0, radix1, radix_shift, expn, JS_RNDN); |
| } |
| if (m == 0) { |
| underflow: |
| a = 0; |
| } else if (e > 1024) { |
| overflow: |
| /* overflow */ |
| a = (uint64_t)0x7ff << 52; |
| } else if (e < -1073) { |
| /* underflow */ |
| /* XXX: check rounding */ |
| a = 0; |
| } else if (e < -1021) { |
| /* subnormal */ |
| a = m >> (-e - 1021); |
| } else { |
| a = ((uint64_t)(e + 1022) << 52) | (m & (((uint64_t)1 << 52) - 1)); |
| } |
| } |
| done: |
| a |= (uint64_t)is_neg << 63; |
| dval = uint64_as_float64(a); |
| done1: |
| if (pnext) |
| *pnext = p; |
| dtoa_free(tmp0); |
| return dval; |
| fail: |
| dval = NAN; |
| goto done1; |
| } |