blob: 5a24296b3a91023a47dd5e89fc8960cb2651b08e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.numbers.examples.jmh.arrays;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
/**
* Tests for {@link DoublePrecision}.
*/
class DoublePrecisionTest {
@Test
void testSplitAssumptions() {
// The multiplier used to split the double value into high and low parts.
final double scale = (1 << 27) + 1;
// The upper limit above which a number may overflow during the split into a high part.
final double limit = 0x1.0p996;
Assertions.assertTrue(Double.isFinite(limit * scale));
Assertions.assertTrue(Double.isFinite(-limit * scale));
// Cannot make the limit the next power up
Assertions.assertEquals(Double.POSITIVE_INFINITY, limit * 2 * scale);
Assertions.assertEquals(Double.NEGATIVE_INFINITY, -limit * 2 * scale);
// Check the level for the safe upper limit of the exponent of the sum of the absolute
// components of the product
Assertions.assertTrue(Math.getExponent(2 * Math.sqrt(Double.MAX_VALUE)) - 2 > 508);
}
@Test
void testHighPart() {
Assertions.assertEquals(Double.NaN, DoublePrecision.highPart(Double.POSITIVE_INFINITY));
Assertions.assertEquals(Double.NaN, DoublePrecision.highPart(Double.NEGATIVE_INFINITY));
Assertions.assertEquals(Double.NaN, DoublePrecision.highPart(Double.NaN));
// Any finite number should be split to a finite number
Assertions.assertTrue(Double.isFinite(DoublePrecision.highPart(Double.MAX_VALUE)));
Assertions.assertTrue(Double.isFinite(DoublePrecision.highPart(-Double.MAX_VALUE)));
}
@Test
void testHighPartUnscaled() {
Assertions.assertEquals(Double.NaN, DoublePrecision.highPartUnscaled(Double.POSITIVE_INFINITY));
Assertions.assertEquals(Double.NaN, DoublePrecision.highPartUnscaled(Double.NEGATIVE_INFINITY));
Assertions.assertEquals(Double.NaN, DoublePrecision.highPartUnscaled(Double.NaN));
// Large finite numbers will overflow during the split
Assertions.assertEquals(Double.NaN, DoublePrecision.highPartUnscaled(Double.MAX_VALUE));
Assertions.assertEquals(Double.NaN, DoublePrecision.highPartUnscaled(-Double.MAX_VALUE));
}
/**
* Test {@link DoublePrecision#productLow(double, double, double)} computes the same
* result as JDK 9 Math.fma(x, y, -x * y) for edge cases.
*/
@Test
void testProductLow() {
assertProductLow(0.0, 1.0, Math.nextDown(Double.MIN_NORMAL));
assertProductLow(0.0, -1.0, Math.nextDown(Double.MIN_NORMAL));
assertProductLow(Double.NaN, 1.0, Double.POSITIVE_INFINITY);
assertProductLow(Double.NaN, 1.0, Double.NEGATIVE_INFINITY);
assertProductLow(Double.NaN, 1.0, Double.NaN);
assertProductLow(0.0, 1.0, Double.MAX_VALUE);
assertProductLow(Double.NaN, 2.0, Double.MAX_VALUE);
}
private static void assertProductLow(double expected, double x, double y) {
Assertions.assertEquals(expected, DoublePrecision.productLow(x, y, x * y), 0.0);
}
@Test
void testIsNotNormal() {
for (double a : new double[] {Double.MAX_VALUE, 1.0, Double.MIN_NORMAL}) {
Assertions.assertFalse(DoublePrecision.isNotNormal(a));
Assertions.assertFalse(DoublePrecision.isNotNormal(-a));
}
for (double a : new double[] {Double.POSITIVE_INFINITY, 0.0,
Math.nextDown(Double.MIN_NORMAL), Double.NaN}) {
Assertions.assertTrue(DoublePrecision.isNotNormal(a));
Assertions.assertTrue(DoublePrecision.isNotNormal(-a));
}
}
}