blob: feca13e582e1ce407ebd8917d614710a4a6e981c [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optimization.general;
import java.util.ArrayList;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
import org.apache.commons.math3.util.FastMath;
/**
* Class that models a circle.
* The parameters of problem are:
* <ul>
* <li>the x-coordinate of the circle center,</li>
* <li>the y-coordinate of the circle center,</li>
* <li>the radius of the circle.</li>
* </ul>
* The model functions are:
* <ul>
* <li>for each triplet (cx, cy, r), the (x, y) coordinates of a point on the
* corresponding circle.</li>
* </ul>
*/
@Deprecated
class CircleProblem implements MultivariateDifferentiableVectorFunction {
/** Cloud of points assumed to be fitted by a circle. */
private final ArrayList<Vector2D> points;
/** Error on the x-coordinate of the points. */
private final double xSigma;
/** Error on the y-coordinate of the points. */
private final double ySigma;
/**
* @param xError Assumed error for the x-coordinate of the circle points.
* @param yError Assumed error for the y-coordinate of the circle points.
*/
public CircleProblem(double xError,
double yError) {
points = new ArrayList<Vector2D>();
xSigma = xError;
ySigma = yError;
}
public void addPoint(Vector2D p) {
points.add(p);
}
public double[] target() {
final double[] t = new double[points.size() * 2];
for (int i = 0; i < points.size(); i++) {
final Vector2D p = points.get(i);
final int index = i * 2;
t[index] = p.getX();
t[index + 1] = p.getY();
}
return t;
}
public double[] weight() {
final double wX = 1 / (xSigma * xSigma);
final double wY = 1 / (ySigma * ySigma);
final double[] w = new double[points.size() * 2];
for (int i = 0; i < points.size(); i++) {
final int index = i * 2;
w[index] = wX;
w[index + 1] = wY;
}
return w;
}
public double[] value(double[] params) {
final double cx = params[0];
final double cy = params[1];
final double r = params[2];
final double[] model = new double[points.size() * 2];
for (int i = 0; i < points.size(); i++) {
final Vector2D p = points.get(i);
// Find the circle point closest to the observed point
// (observed points are points add through the addPoint method above)
final double dX = cx - p.getX();
final double dY = cy - p.getY();
final double scaling = r / FastMath.hypot(dX, dY);
final int index = i * 2;
model[index] = cx - scaling * dX;
model[index + 1] = cy - scaling * dY;
}
return model;
}
public DerivativeStructure[] value(DerivativeStructure[] params) {
final DerivativeStructure cx = params[0];
final DerivativeStructure cy = params[1];
final DerivativeStructure r = params[2];
final DerivativeStructure[] model = new DerivativeStructure[points.size() * 2];
for (int i = 0; i < points.size(); i++) {
final Vector2D p = points.get(i);
// Find the circle point closest to the observed point
// (observed points are points add through the addPoint method above)
final DerivativeStructure dX = cx.subtract(p.getX());
final DerivativeStructure dY = cy.subtract(p.getY());
final DerivativeStructure scaling = r.divide(dX.multiply(dX).add(dY.multiply(dY)).sqrt());
final int index = i * 2;
model[index] = cx.subtract(scaling.multiply(dX));
model[index + 1] = cy.subtract(scaling.multiply(dY));
}
return model;
}
}