blob: 465c3bf669ce80c049bded2971e6545e374d8c42 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.distribution;
import org.apache.commons.math3.TestUtils;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.util.Precision;
import org.junit.Assert;
import org.junit.Test;
/**
* Test cases for HyperGeometriclDistribution.
* Extends IntegerDistributionAbstractTest. See class javadoc for
* IntegerDistributionAbstractTest for details.
*
*/
public class HypergeometricDistributionTest extends IntegerDistributionAbstractTest {
/**
* Constructor to override default tolerance.
*/
public HypergeometricDistributionTest() {
setTolerance(1e-12);
}
//-------------- Implementations for abstract methods -----------------------
/** Creates the default discrete distribution instance to use in tests. */
@Override
public IntegerDistribution makeDistribution() {
return new HypergeometricDistribution(10, 5, 5);
}
/** Creates the default probability density test input values */
@Override
public int[] makeDensityTestPoints() {
return new int[] {-1, 0, 1, 2, 3, 4, 5, 10};
}
/**
* Creates the default probability density test expected values
* Reference values are from R, version 2.15.3.
*/
@Override
public double[] makeDensityTestValues() {
return new double[] {0d, 0.00396825396825, 0.0992063492063, 0.396825396825, 0.396825396825,
0.0992063492063, 0.00396825396825, 0d};
}
/**
* Creates the default probability log density test expected values
* Reference values are from R, version 2.14.1.
*/
@Override
public double[] makeLogDensityTestValues() {
//-Inf -Inf
return new double[] {Double.NEGATIVE_INFINITY, -5.52942908751142, -2.31055326264322, -0.924258901523332,
-0.924258901523332, -2.31055326264322, -5.52942908751142, Double.NEGATIVE_INFINITY};
}
/** Creates the default cumulative probability density test input values */
@Override
public int[] makeCumulativeTestPoints() {
return makeDensityTestPoints();
}
/**
* Creates the default cumulative probability density test expected values
* Reference values are from R, version 2.15.3.
*/
@Override
public double[] makeCumulativeTestValues() {
return new double[] {0d, 0.00396825396825, 0.103174603175, .5, 0.896825396825, 0.996031746032,
1, 1};
}
/** Creates the default inverse cumulative probability test input values */
@Override
public double[] makeInverseCumulativeTestPoints() {
return new double[] {0d, 0.001d, 0.010d, 0.025d, 0.050d, 0.100d, 0.999d,
0.990d, 0.975d, 0.950d, 0.900d, 1d};
}
/** Creates the default inverse cumulative probability density test expected values */
@Override
public int[] makeInverseCumulativeTestValues() {
return new int[] {0, 0, 1, 1, 1, 1, 5, 4, 4, 4, 4, 5};
}
//-------------------- Additional test cases ------------------------------
/** Verify that if there are no failures, mass is concentrated on sampleSize */
@Test
public void testDegenerateNoFailures() {
HypergeometricDistribution dist = new HypergeometricDistribution(5,5,3);
setDistribution(dist);
setCumulativeTestPoints(new int[] {-1, 0, 1, 3, 10 });
setCumulativeTestValues(new double[] {0d, 0d, 0d, 1d, 1d});
setDensityTestPoints(new int[] {-1, 0, 1, 3, 10});
setDensityTestValues(new double[] {0d, 0d, 0d, 1d, 0d});
setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d});
setInverseCumulativeTestValues(new int[] {3, 3});
verifyDensities();
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
Assert.assertEquals(dist.getSupportLowerBound(), 3);
Assert.assertEquals(dist.getSupportUpperBound(), 3);
}
/** Verify that if there are no successes, mass is concentrated on 0 */
@Test
public void testDegenerateNoSuccesses() {
HypergeometricDistribution dist = new HypergeometricDistribution(5,0,3);
setDistribution(dist);
setCumulativeTestPoints(new int[] {-1, 0, 1, 3, 10 });
setCumulativeTestValues(new double[] {0d, 1d, 1d, 1d, 1d});
setDensityTestPoints(new int[] {-1, 0, 1, 3, 10});
setDensityTestValues(new double[] {0d, 1d, 0d, 0d, 0d});
setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d});
setInverseCumulativeTestValues(new int[] {0, 0});
verifyDensities();
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
Assert.assertEquals(dist.getSupportLowerBound(), 0);
Assert.assertEquals(dist.getSupportUpperBound(), 0);
}
/** Verify that if sampleSize = populationSize, mass is concentrated on numberOfSuccesses */
@Test
public void testDegenerateFullSample() {
HypergeometricDistribution dist = new HypergeometricDistribution(5,3,5);
setDistribution(dist);
setCumulativeTestPoints(new int[] {-1, 0, 1, 3, 10 });
setCumulativeTestValues(new double[] {0d, 0d, 0d, 1d, 1d});
setDensityTestPoints(new int[] {-1, 0, 1, 3, 10});
setDensityTestValues(new double[] {0d, 0d, 0d, 1d, 0d});
setInverseCumulativeTestPoints(new double[] {0.1d, 0.5d});
setInverseCumulativeTestValues(new int[] {3, 3});
verifyDensities();
verifyCumulativeProbabilities();
verifyInverseCumulativeProbabilities();
Assert.assertEquals(dist.getSupportLowerBound(), 3);
Assert.assertEquals(dist.getSupportUpperBound(), 3);
}
@Test
public void testPreconditions() {
try {
new HypergeometricDistribution(0, 3, 5);
Assert.fail("negative population size. NotStrictlyPositiveException expected");
} catch(NotStrictlyPositiveException ex) {
// Expected.
}
try {
new HypergeometricDistribution(5, -1, 5);
Assert.fail("negative number of successes. NotPositiveException expected");
} catch(NotPositiveException ex) {
// Expected.
}
try {
new HypergeometricDistribution(5, 3, -1);
Assert.fail("negative sample size. NotPositiveException expected");
} catch(NotPositiveException ex) {
// Expected.
}
try {
new HypergeometricDistribution(5, 6, 5);
Assert.fail("numberOfSuccesses > populationSize. NumberIsTooLargeException expected");
} catch(NumberIsTooLargeException ex) {
// Expected.
}
try {
new HypergeometricDistribution(5, 3, 6);
Assert.fail("sampleSize > populationSize. NumberIsTooLargeException expected");
} catch(NumberIsTooLargeException ex) {
// Expected.
}
}
@Test
public void testAccessors() {
HypergeometricDistribution dist = new HypergeometricDistribution(5, 3, 4);
Assert.assertEquals(5, dist.getPopulationSize());
Assert.assertEquals(3, dist.getNumberOfSuccesses());
Assert.assertEquals(4, dist.getSampleSize());
}
@Test
public void testLargeValues() {
int populationSize = 3456;
int sampleSize = 789;
int numberOfSucceses = 101;
double[][] data = {
{0.0, 2.75646034603961e-12, 2.75646034603961e-12, 1.0},
{1.0, 8.55705370142386e-11, 8.83269973602783e-11, 0.999999999997244},
{2.0, 1.31288129219665e-9, 1.40120828955693e-9, 0.999999999911673},
{3.0, 1.32724172984193e-8, 1.46736255879763e-8, 0.999999998598792},
{4.0, 9.94501711734089e-8, 1.14123796761385e-7, 0.999999985326375},
{5.0, 5.89080768883643e-7, 7.03204565645028e-7, 0.999999885876203},
{20.0, 0.0760051397707708, 0.27349758476299, 0.802507555007781},
{21.0, 0.087144222047629, 0.360641806810619, 0.72650241523701},
{22.0, 0.0940378846881819, 0.454679691498801, 0.639358193189381},
{23.0, 0.0956897500614809, 0.550369441560282, 0.545320308501199},
{24.0, 0.0919766921922999, 0.642346133752582, 0.449630558439718},
{25.0, 0.083641637261095, 0.725987771013677, 0.357653866247418},
{96.0, 5.93849188852098e-57, 1.0, 6.01900244560712e-57},
{97.0, 7.96593036832547e-59, 1.0, 8.05105570861321e-59},
{98.0, 8.44582921934367e-61, 1.0, 8.5125340287733e-61},
{99.0, 6.63604297068222e-63, 1.0, 6.670480942963e-63},
{100.0, 3.43501099007557e-65, 1.0, 3.4437972280786e-65},
{101.0, 8.78623800302957e-68, 1.0, 8.78623800302957e-68},
};
testHypergeometricDistributionProbabilities(populationSize, sampleSize, numberOfSucceses, data);
}
private void testHypergeometricDistributionProbabilities(int populationSize, int sampleSize, int numberOfSucceses, double[][] data) {
HypergeometricDistribution dist = new HypergeometricDistribution(populationSize, numberOfSucceses, sampleSize);
for (int i = 0; i < data.length; ++i) {
int x = (int)data[i][0];
double pmf = data[i][1];
double actualPmf = dist.probability(x);
TestUtils.assertRelativelyEquals("Expected equals for <"+x+"> pmf",pmf, actualPmf, 1.0e-9);
double cdf = data[i][2];
double actualCdf = dist.cumulativeProbability(x);
TestUtils.assertRelativelyEquals("Expected equals for <"+x+"> cdf",cdf, actualCdf, 1.0e-9);
double cdf1 = data[i][3];
double actualCdf1 = dist.upperCumulativeProbability(x);
TestUtils.assertRelativelyEquals("Expected equals for <"+x+"> cdf1",cdf1, actualCdf1, 1.0e-9);
}
}
@Test
public void testMoreLargeValues() {
int populationSize = 26896;
int sampleSize = 895;
int numberOfSucceses = 55;
double[][] data = {
{0.0, 0.155168304750504, 0.155168304750504, 1.0},
{1.0, 0.29437545000746, 0.449543754757964, 0.844831695249496},
{2.0, 0.273841321577003, 0.723385076334967, 0.550456245242036},
{3.0, 0.166488572570786, 0.889873648905753, 0.276614923665033},
{4.0, 0.0743969744713231, 0.964270623377076, 0.110126351094247},
{5.0, 0.0260542785784855, 0.990324901955562, 0.0357293766229237},
{20.0, 3.57101101678792e-16, 1.0, 3.78252101622096e-16},
{21.0, 2.00551638598312e-17, 1.0, 2.11509999433041e-17},
{22.0, 1.04317070180562e-18, 1.0, 1.09583608347287e-18},
{23.0, 5.03153504903308e-20, 1.0, 5.266538166725e-20},
{24.0, 2.2525984149695e-21, 1.0, 2.35003117691919e-21},
{25.0, 9.3677424515947e-23, 1.0, 9.74327619496943e-23},
{50.0, 9.83633962945521e-69, 1.0, 9.8677629437617e-69},
{51.0, 3.13448949497553e-71, 1.0, 3.14233143064882e-71},
{52.0, 7.82755221928122e-74, 1.0, 7.84193567329055e-74},
{53.0, 1.43662126065532e-76, 1.0, 1.43834540093295e-76},
{54.0, 1.72312692517348e-79, 1.0, 1.7241402776278e-79},
{55.0, 1.01335245432581e-82, 1.0, 1.01335245432581e-82},
};
testHypergeometricDistributionProbabilities(populationSize, sampleSize, numberOfSucceses, data);
}
@Test
public void testMoments() {
final double tol = 1e-9;
HypergeometricDistribution dist;
dist = new HypergeometricDistribution(1500, 40, 100);
Assert.assertEquals(dist.getNumericalMean(), 40d * 100d / 1500d, tol);
Assert.assertEquals(dist.getNumericalVariance(), ( 100d * 40d * (1500d - 100d) * (1500d - 40d) ) / ( (1500d * 1500d * 1499d) ), tol);
dist = new HypergeometricDistribution(3000, 55, 200);
Assert.assertEquals(dist.getNumericalMean(), 55d * 200d / 3000d, tol);
Assert.assertEquals(dist.getNumericalVariance(), ( 200d * 55d * (3000d - 200d) * (3000d - 55d) ) / ( (3000d * 3000d * 2999d) ), tol);
}
@Test
public void testMath644() {
int N = 14761461; // population
int m = 1035; // successes in population
int n = 1841; // number of trials
int k = 0;
final HypergeometricDistribution dist = new HypergeometricDistribution(N, m, n);
Assert.assertTrue(Precision.compareTo(1.0, dist.upperCumulativeProbability(k), 1) == 0);
Assert.assertTrue(Precision.compareTo(dist.cumulativeProbability(k), 0.0, 1) > 0);
// another way to calculate the upper cumulative probability
double upper = 1.0 - dist.cumulativeProbability(k) + dist.probability(k);
Assert.assertTrue(Precision.compareTo(1.0, upper, 1) == 0);
}
@Test
public void testMath1021() {
final int N = 43130568;
final int m = 42976365;
final int n = 50;
final HypergeometricDistribution dist = new HypergeometricDistribution(N, m, n);
for (int i = 0; i < 100; i++) {
final int sample = dist.sample();
Assert.assertTrue("sample=" + sample, 0 <= sample);
Assert.assertTrue("sample=" + sample, sample <= n);
}
}
}