blob: 34f64650b946c3aaa80de677208801bf87018405 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.ode.nonstiff;
import org.apache.commons.math4.legacy.core.Field;
import org.apache.commons.math4.legacy.core.RealFieldElement;
import org.apache.commons.math4.legacy.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math4.legacy.exception.DimensionMismatchException;
import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
import org.apache.commons.math4.legacy.exception.NoBracketingException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.ode.FieldExpandableODE;
import org.apache.commons.math4.legacy.ode.FirstOrderFieldDifferentialEquations;
import org.apache.commons.math4.legacy.ode.FirstOrderFieldIntegrator;
import org.apache.commons.math4.legacy.ode.FieldODEState;
import org.apache.commons.math4.legacy.ode.FieldODEStateAndDerivative;
import org.apache.commons.math4.legacy.ode.TestFieldProblem1;
import org.apache.commons.math4.legacy.ode.TestFieldProblem3;
import org.apache.commons.math4.legacy.ode.TestFieldProblem4;
import org.apache.commons.math4.legacy.ode.TestFieldProblem5;
import org.apache.commons.math4.legacy.ode.TestFieldProblemHandler;
import org.apache.commons.math4.legacy.ode.events.Action;
import org.apache.commons.math4.legacy.ode.events.FieldEventHandler;
import org.apache.commons.math4.legacy.ode.sampling.FieldStepHandler;
import org.apache.commons.math4.legacy.ode.sampling.FieldStepInterpolator;
import org.apache.commons.math4.core.jdkmath.JdkMath;
import org.apache.commons.math4.legacy.core.MathArrays;
import org.junit.Assert;
import org.junit.Test;
public abstract class EmbeddedRungeKuttaFieldIntegratorAbstractTest {
protected abstract <T extends RealFieldElement<T>> EmbeddedRungeKuttaFieldIntegrator<T>
createIntegrator(Field<T> field, double minStep, double maxStep,
double scalAbsoluteTolerance, double scalRelativeTolerance);
protected abstract <T extends RealFieldElement<T>> EmbeddedRungeKuttaFieldIntegrator<T>
createIntegrator(Field<T> field, double minStep, double maxStep,
double[] vecAbsoluteTolerance, double[] vecRelativeTolerance);
@Test
public abstract void testNonFieldIntegratorConsistency();
protected <T extends RealFieldElement<T>> void doTestNonFieldIntegratorConsistency(final Field<T> field) {
try {
// get the Butcher arrays from the field integrator
EmbeddedRungeKuttaFieldIntegrator<T> fieldIntegrator = createIntegrator(field, 0.001, 1.0, 1.0, 1.0);
T[][] fieldA = fieldIntegrator.getA();
T[] fieldB = fieldIntegrator.getB();
T[] fieldC = fieldIntegrator.getC();
if (fieldIntegrator instanceof DormandPrince853FieldIntegrator) {
// special case for Dormand-Prince 8(5,3), the array in the regular
// integrator is smaller because as of 3.X, the interpolation steps
// are not performed by the integrator itself
T[][] reducedFieldA = MathArrays.buildArray(field, 12, -1);
T[] reducedFieldB = MathArrays.buildArray(field, 13);
T[] reducedFieldC = MathArrays.buildArray(field, 12);
System.arraycopy(fieldA, 0, reducedFieldA, 0, reducedFieldA.length);
System.arraycopy(fieldB, 0, reducedFieldB, 0, reducedFieldB.length);
System.arraycopy(fieldC, 0, reducedFieldC, 0, reducedFieldC.length);
fieldA = reducedFieldA;
fieldB = reducedFieldB;
fieldC = reducedFieldC;
}
String fieldName = fieldIntegrator.getClass().getName();
String regularName = fieldName.replaceAll("Field", "");
// get the Butcher arrays from the regular integrator
@SuppressWarnings("unchecked")
Class<RungeKuttaIntegrator> c = (Class<RungeKuttaIntegrator>) Class.forName(regularName);
java.lang.reflect.Field jlrFieldA = c.getDeclaredField("STATIC_A");
jlrFieldA.setAccessible(true);
double[][] regularA = (double[][]) jlrFieldA.get(null);
java.lang.reflect.Field jlrFieldB = c.getDeclaredField("STATIC_B");
jlrFieldB.setAccessible(true);
double[] regularB = (double[]) jlrFieldB.get(null);
java.lang.reflect.Field jlrFieldC = c.getDeclaredField("STATIC_C");
jlrFieldC.setAccessible(true);
double[] regularC = (double[]) jlrFieldC.get(null);
Assert.assertEquals(regularA.length, fieldA.length);
for (int i = 0; i < regularA.length; ++i) {
checkArray(regularA[i], fieldA[i]);
}
checkArray(regularB, fieldB);
checkArray(regularC, fieldC);
} catch (ClassNotFoundException cnfe) {
Assert.fail(cnfe.getLocalizedMessage());
} catch (IllegalAccessException iae) {
Assert.fail(iae.getLocalizedMessage());
} catch (IllegalArgumentException iae) {
Assert.fail(iae.getLocalizedMessage());
} catch (SecurityException se) {
Assert.fail(se.getLocalizedMessage());
} catch (NoSuchFieldException nsfe) {
Assert.fail(nsfe.getLocalizedMessage());
}
}
private <T extends RealFieldElement<T>> void checkArray(double[] regularArray, T[] fieldArray) {
Assert.assertEquals(regularArray.length, fieldArray.length);
for (int i = 0; i < regularArray.length; ++i) {
if (regularArray[i] == 0) {
Assert.assertEquals(0.0, fieldArray[i].getReal(), 0.0);
} else {
Assert.assertEquals(regularArray[i], fieldArray[i].getReal(), JdkMath.ulp(regularArray[i]));
}
}
}
@Test
public abstract void testForwardBackwardExceptions();
protected <T extends RealFieldElement<T>> void doTestForwardBackwardExceptions(final Field<T> field) {
FirstOrderFieldDifferentialEquations<T> equations = new FirstOrderFieldDifferentialEquations<T>() {
@Override
public int getDimension() {
return 1;
}
@Override
public void init(T t0, T[] y0, T t) {
}
@Override
public T[] computeDerivatives(T t, T[] y) {
if (t.getReal() < -0.5) {
throw new LocalException();
} else {
throw new RuntimeException("oops");
}
}
};
EmbeddedRungeKuttaFieldIntegrator<T> integrator = createIntegrator(field, 0.0, 1.0, 1.0e-10, 1.0e-10);
try {
integrator.integrate(new FieldExpandableODE<>(equations),
new FieldODEState<>(field.getOne().negate(),
MathArrays.buildArray(field, 1)),
field.getZero());
Assert.fail("an exception should have been thrown");
} catch(LocalException de) {
// expected behavior
}
try {
integrator.integrate(new FieldExpandableODE<>(equations),
new FieldODEState<>(field.getZero(),
MathArrays.buildArray(field, 1)),
field.getOne());
Assert.fail("an exception should have been thrown");
} catch(RuntimeException de) {
// expected behavior
}
}
protected static class LocalException extends RuntimeException {
private static final long serialVersionUID = 20151208L;
}
@Test(expected=NumberIsTooSmallException.class)
public abstract void testMinStep();
protected <T extends RealFieldElement<T>> void doTestMinStep(final Field<T> field)
throws NumberIsTooSmallException {
TestFieldProblem1<T> pb = new TestFieldProblem1<>(field);
double minStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).multiply(0.1).getReal();
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double[] vecAbsoluteTolerance = { 1.0e-15, 1.0e-16 };
double[] vecRelativeTolerance = { 1.0e-15, 1.0e-16 };
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
vecAbsoluteTolerance, vecRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.fail("an exception should have been thrown");
}
@Test
public abstract void testIncreasingTolerance();
protected <T extends RealFieldElement<T>> void doTestIncreasingTolerance(final Field<T> field,
double factor,
double epsilon) {
int previousCalls = Integer.MAX_VALUE;
for (int i = -12; i < -2; ++i) {
TestFieldProblem1<T> pb = new TestFieldProblem1<>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = JdkMath.pow(10.0, i);
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.assertTrue(handler.getMaximalValueError().getReal() < (factor * scalAbsoluteTolerance));
Assert.assertEquals(0, handler.getMaximalTimeError().getReal(), epsilon);
int calls = pb.getCalls();
Assert.assertEquals(integ.getEvaluations(), calls);
Assert.assertTrue(calls <= previousCalls);
previousCalls = calls;
}
}
@Test
public abstract void testEvents();
protected <T extends RealFieldElement<T>> void doTestEvents(final Field<T> field,
final double epsilonMaxValue,
final String name) {
TestFieldProblem4<T> pb = new TestFieldProblem4<>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<>(pb, integ);
integ.addStepHandler(handler);
FieldEventHandler<T>[] functions = pb.getEventsHandlers();
double convergence = 1.0e-8 * maxStep;
for (int l = 0; l < functions.length; ++l) {
integ.addEventHandler(functions[l], Double.POSITIVE_INFINITY, convergence, 1000);
}
Assert.assertEquals(functions.length, integ.getEventHandlers().size());
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.assertEquals(0, handler.getMaximalValueError().getReal(), epsilonMaxValue);
Assert.assertEquals(0, handler.getMaximalTimeError().getReal(), convergence);
Assert.assertEquals(12.0, handler.getLastTime().getReal(), convergence);
Assert.assertEquals(name, integ.getName());
integ.clearEventHandlers();
Assert.assertEquals(0, integ.getEventHandlers().size());
}
@Test(expected=LocalException.class)
public abstract void testEventsErrors();
protected <T extends RealFieldElement<T>> void doTestEventsErrors(final Field<T> field)
throws LocalException {
final TestFieldProblem1<T> pb = new TestFieldProblem1<>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<>(pb, integ);
integ.addStepHandler(handler);
integ.addEventHandler(new FieldEventHandler<T>() {
@Override
public void init(FieldODEStateAndDerivative<T> state0, T t) {
}
@Override
public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
return Action.CONTINUE;
}
@Override
public T g(FieldODEStateAndDerivative<T> state) {
T middle = pb.getInitialState().getTime().add(pb.getFinalTime()).multiply(0.5);
T offset = state.getTime().subtract(middle);
if (offset.getReal() > 0) {
throw new LocalException();
}
return offset;
}
@Override
public FieldODEState<T> resetState(FieldODEStateAndDerivative<T> state) {
return state;
}
}, Double.POSITIVE_INFINITY, 1.0e-8 * maxStep, 1000);
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
}
@Test
public abstract void testEventsNoConvergence();
protected <T extends RealFieldElement<T>> void doTestEventsNoConvergence(final Field<T> field){
final TestFieldProblem1<T> pb = new TestFieldProblem1<>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance, scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<>(pb, integ);
integ.addStepHandler(handler);
integ.addEventHandler(new FieldEventHandler<T>() {
@Override
public void init(FieldODEStateAndDerivative<T> state0, T t) {
}
@Override
public Action eventOccurred(FieldODEStateAndDerivative<T> state, boolean increasing) {
return Action.CONTINUE;
}
@Override
public T g(FieldODEStateAndDerivative<T> state) {
T middle = pb.getInitialState().getTime().add(pb.getFinalTime()).multiply(0.5);
T offset = state.getTime().subtract(middle);
return (offset.getReal() > 0) ? offset.add(0.5) : offset.subtract(0.5);
}
@Override
public FieldODEState<T> resetState(FieldODEStateAndDerivative<T> state) {
return state;
}
}, Double.POSITIVE_INFINITY, 1.0e-8 * maxStep, 3);
try {
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.fail("an exception should have been thrown");
} catch (MaxCountExceededException mcee) {
// Expected.
}
}
@Test
public abstract void testSanityChecks();
protected <T extends RealFieldElement<T>> void doTestSanityChecks(Field<T> field) {
TestFieldProblem3<T> pb = new TestFieldProblem3<>(field);
try {
EmbeddedRungeKuttaFieldIntegrator<T> integrator = createIntegrator(field, 0,
pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal(),
new double[4], new double[4]);
integrator.integrate(new FieldExpandableODE<>(pb),
new FieldODEState<>(pb.getInitialState().getTime(),
MathArrays.buildArray(field, 6)),
pb.getFinalTime());
Assert.fail("an exception should have been thrown");
} catch(DimensionMismatchException ie) {
}
try {
EmbeddedRungeKuttaFieldIntegrator<T> integrator =
createIntegrator(field, 0,
pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal(),
new double[2], new double[4]);
integrator.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.fail("an exception should have been thrown");
} catch(DimensionMismatchException ie) {
}
try {
EmbeddedRungeKuttaFieldIntegrator<T> integrator =
createIntegrator(field, 0,
pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal(),
new double[4], new double[4]);
integrator.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getInitialState().getTime());
Assert.fail("an exception should have been thrown");
} catch(NumberIsTooSmallException ie) {
}
}
@Test
public abstract void testBackward();
protected <T extends RealFieldElement<T>> void doTestBackward(Field<T> field,
final double epsilonLast,
final double epsilonMaxValue,
final double epsilonMaxTime,
final String name)
throws DimensionMismatchException, NumberIsTooSmallException,
MaxCountExceededException, NoBracketingException {
TestFieldProblem5<T> pb = new TestFieldProblem5<>(field);
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).abs().getReal();
double scalAbsoluteTolerance = 1.0e-8;
double scalRelativeTolerance = 0.01 * scalAbsoluteTolerance;
EmbeddedRungeKuttaFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
scalAbsoluteTolerance,
scalRelativeTolerance);
TestFieldProblemHandler<T> handler = new TestFieldProblemHandler<>(pb, integ);
integ.addStepHandler(handler);
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
Assert.assertEquals(0, handler.getLastError().getReal(), epsilonLast);
Assert.assertEquals(0, handler.getMaximalValueError().getReal(), epsilonMaxValue);
Assert.assertEquals(0, handler.getMaximalTimeError().getReal(), epsilonMaxTime);
Assert.assertEquals(name, integ.getName());
}
@Test
public abstract void testKepler();
protected <T extends RealFieldElement<T>> void doTestKepler(Field<T> field, double epsilon) {
final TestFieldProblem3<T> pb = new TestFieldProblem3<>(field, field.getZero().add(0.9));
double minStep = 0;
double maxStep = pb.getFinalTime().subtract(pb.getInitialState().getTime()).getReal();
double[] vecAbsoluteTolerance = { 1.0e-8, 1.0e-8, 1.0e-10, 1.0e-10 };
double[] vecRelativeTolerance = { 1.0e-10, 1.0e-10, 1.0e-8, 1.0e-8 };
FirstOrderFieldIntegrator<T> integ = createIntegrator(field, minStep, maxStep,
vecAbsoluteTolerance, vecRelativeTolerance);
integ.addStepHandler(new KeplerHandler<>(pb, epsilon));
integ.integrate(new FieldExpandableODE<>(pb), pb.getInitialState(), pb.getFinalTime());
}
private static class KeplerHandler<T extends RealFieldElement<T>> implements FieldStepHandler<T> {
private T maxError;
private final TestFieldProblem3<T> pb;
private final double epsilon;
KeplerHandler(TestFieldProblem3<T> pb, double epsilon) {
this.pb = pb;
this.epsilon = epsilon;
maxError = pb.getField().getZero();
}
@Override
public void init(FieldODEStateAndDerivative<T> state0, T t) {
maxError = pb.getField().getZero();
}
@Override
public void handleStep(FieldStepInterpolator<T> interpolator, boolean isLast)
throws MaxCountExceededException {
FieldODEStateAndDerivative<T> current = interpolator.getCurrentState();
T[] theoreticalY = pb.computeTheoreticalState(current.getTime());
T dx = current.getState()[0].subtract(theoreticalY[0]);
T dy = current.getState()[1].subtract(theoreticalY[1]);
T error = dx.multiply(dx).add(dy.multiply(dy));
if (error.subtract(maxError).getReal() > 0) {
maxError = error;
}
if (isLast) {
Assert.assertEquals(0.0, maxError.getReal(), epsilon);
}
}
}
@Test
public abstract void testPartialDerivatives();
protected void doTestPartialDerivatives(final double epsilonY,
final double[] epsilonPartials) {
// parameters indices
final int parameters = 5;
final int order = 1;
final int parOmega = 0;
final int parTO = 1;
final int parY00 = 2;
final int parY01 = 3;
final int parT = 4;
DerivativeStructure omega = new DerivativeStructure(parameters, order, parOmega, 1.3);
DerivativeStructure t0 = new DerivativeStructure(parameters, order, parTO, 1.3);
DerivativeStructure[] y0 = new DerivativeStructure[] {
new DerivativeStructure(parameters, order, parY00, 3.0),
new DerivativeStructure(parameters, order, parY01, 4.0)
};
DerivativeStructure t = new DerivativeStructure(parameters, order, parT, 6.0);
SinCos sinCos = new SinCos(omega);
EmbeddedRungeKuttaFieldIntegrator<DerivativeStructure> integrator =
createIntegrator(omega.getField(),
t.subtract(t0).multiply(0.001).getReal(), t.subtract(t0).getReal(),
1.0e-12, 1.0e-12);
FieldODEStateAndDerivative<DerivativeStructure> result =
integrator.integrate(new FieldExpandableODE<>(sinCos),
new FieldODEState<>(t0, y0),
t);
// check values
for (int i = 0; i < sinCos.getDimension(); ++i) {
Assert.assertEquals(sinCos.theoreticalY(t.getReal())[i], result.getState()[i].getValue(), epsilonY);
}
// check derivatives
final double[][] derivatives = sinCos.getDerivatives(t.getReal());
for (int i = 0; i < sinCos.getDimension(); ++i) {
for (int parameter = 0; parameter < parameters; ++parameter) {
Assert.assertEquals(derivatives[i][parameter], dYdP(result.getState()[i], parameter), epsilonPartials[parameter]);
}
}
}
private double dYdP(final DerivativeStructure y, final int parameter) {
int[] orders = new int[y.getFreeParameters()];
orders[parameter] = 1;
return y.getPartialDerivative(orders);
}
private static class SinCos implements FirstOrderFieldDifferentialEquations<DerivativeStructure> {
private final DerivativeStructure omega;
private DerivativeStructure r;
private DerivativeStructure alpha;
private double dRdY00;
private double dRdY01;
private double dAlphadOmega;
private double dAlphadT0;
private double dAlphadY00;
private double dAlphadY01;
protected SinCos(final DerivativeStructure omega) {
this.omega = omega;
}
@Override
public int getDimension() {
return 2;
}
@Override
public void init(final DerivativeStructure t0, final DerivativeStructure[] y0,
final DerivativeStructure finalTime) {
// theoretical solution is y(t) = { r * sin(omega * t + alpha), r * cos(omega * t + alpha) }
// so we retrieve alpha by identification from the initial state
final DerivativeStructure r2 = y0[0].multiply(y0[0]).add(y0[1].multiply(y0[1]));
this.r = r2.sqrt();
this.dRdY00 = y0[0].divide(r).getReal();
this.dRdY01 = y0[1].divide(r).getReal();
this.alpha = y0[0].atan2(y0[1]).subtract(t0.multiply(omega));
this.dAlphadOmega = -t0.getReal();
this.dAlphadT0 = -omega.getReal();
this.dAlphadY00 = y0[1].divide(r2).getReal();
this.dAlphadY01 = y0[0].negate().divide(r2).getReal();
}
@Override
public DerivativeStructure[] computeDerivatives(final DerivativeStructure t, final DerivativeStructure[] y) {
return new DerivativeStructure[] {
omega.multiply(y[1]),
omega.multiply(y[0]).negate()
};
}
public double[] theoreticalY(final double t) {
final double theta = omega.getReal() * t + alpha.getReal();
return new double[] {
r.getReal() * JdkMath.sin(theta), r.getReal() * JdkMath.cos(theta)
};
}
public double[][] getDerivatives(final double t) {
// intermediate angle and state
final double theta = omega.getReal() * t + alpha.getReal();
final double sin = JdkMath.sin(theta);
final double cos = JdkMath.cos(theta);
final double y0 = r.getReal() * sin;
final double y1 = r.getReal() * cos;
// partial derivatives of the state first component
final double dY0dOmega = y1 * (t + dAlphadOmega);
final double dY0dT0 = y1 * dAlphadT0;
final double dY0dY00 = dRdY00 * sin + y1 * dAlphadY00;
final double dY0dY01 = dRdY01 * sin + y1 * dAlphadY01;
final double dY0dT = y1 * omega.getReal();
// partial derivatives of the state second component
final double dY1dOmega = - y0 * (t + dAlphadOmega);
final double dY1dT0 = - y0 * dAlphadT0;
final double dY1dY00 = dRdY00 * cos - y0 * dAlphadY00;
final double dY1dY01 = dRdY01 * cos - y0 * dAlphadY01;
final double dY1dT = - y0 * omega.getReal();
return new double[][] {
{ dY0dOmega, dY0dT0, dY0dY00, dY0dY01, dY0dT },
{ dY1dOmega, dY1dT0, dY1dY00, dY1dY01, dY1dT }
};
}
}
}