blob: 769d1bc38a83b149c491129509239ecfe3062d76 [file] [log] [blame]
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mvcc
import (
"math/rand"
"os"
"testing"
"github.com/coreos/etcd/lease"
"github.com/coreos/etcd/mvcc/backend"
)
func BenchmarkWatchableStorePut(b *testing.B) {
be, tmpPath := backend.NewDefaultTmpBackend()
s := New(be, &lease.FakeLessor{}, nil)
defer cleanup(s, be, tmpPath)
// arbitrary number of bytes
bytesN := 64
keys := createBytesSlice(bytesN, b.N)
vals := createBytesSlice(bytesN, b.N)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
s.Put(keys[i], vals[i], lease.NoLease)
}
}
// BenchmarkWatchableStoreTxnPut benchmarks the Put operation
// with transaction begin and end, where transaction involves
// some synchronization operations, such as mutex locking.
func BenchmarkWatchableStoreTxnPut(b *testing.B) {
var i fakeConsistentIndex
be, tmpPath := backend.NewDefaultTmpBackend()
s := New(be, &lease.FakeLessor{}, &i)
defer cleanup(s, be, tmpPath)
// arbitrary number of bytes
bytesN := 64
keys := createBytesSlice(bytesN, b.N)
vals := createBytesSlice(bytesN, b.N)
b.ResetTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
txn := s.Write()
txn.Put(keys[i], vals[i], lease.NoLease)
txn.End()
}
}
// BenchmarkWatchableStoreWatchSyncPut benchmarks the case of
// many synced watchers receiving a Put notification.
func BenchmarkWatchableStoreWatchSyncPut(b *testing.B) {
be, tmpPath := backend.NewDefaultTmpBackend()
s := newWatchableStore(be, &lease.FakeLessor{}, nil)
defer cleanup(s, be, tmpPath)
k := []byte("testkey")
v := []byte("testval")
w := s.NewWatchStream()
defer w.Close()
watchIDs := make([]WatchID, b.N)
for i := range watchIDs {
// non-0 value to keep watchers in unsynced
watchIDs[i] = w.Watch(k, nil, 1)
}
b.ResetTimer()
b.ReportAllocs()
// trigger watchers
s.Put(k, v, lease.NoLease)
for range watchIDs {
<-w.Chan()
}
select {
case wc := <-w.Chan():
b.Fatalf("unexpected data %v", wc)
default:
}
}
// Benchmarks on cancel function performance for unsynced watchers
// in a WatchableStore. It creates k*N watchers to populate unsynced
// with a reasonably large number of watchers. And measures the time it
// takes to cancel N watchers out of k*N watchers. The performance is
// expected to differ depending on the unsynced member implementation.
// TODO: k is an arbitrary constant. We need to figure out what factor
// we should put to simulate the real-world use cases.
func BenchmarkWatchableStoreUnsyncedCancel(b *testing.B) {
be, tmpPath := backend.NewDefaultTmpBackend()
s := NewStore(be, &lease.FakeLessor{}, nil)
// manually create watchableStore instead of newWatchableStore
// because newWatchableStore periodically calls syncWatchersLoop
// method to sync watchers in unsynced map. We want to keep watchers
// in unsynced for this benchmark.
ws := &watchableStore{
store: s,
unsynced: newWatcherGroup(),
// to make the test not crash from assigning to nil map.
// 'synced' doesn't get populated in this test.
synced: newWatcherGroup(),
}
defer func() {
ws.store.Close()
os.Remove(tmpPath)
}()
// Put a key so that we can spawn watchers on that key
// (testKey in this test). This increases the rev to 1,
// and later we can we set the watcher's startRev to 1,
// and force watchers to be in unsynced.
testKey := []byte("foo")
testValue := []byte("bar")
s.Put(testKey, testValue, lease.NoLease)
w := ws.NewWatchStream()
const k int = 2
benchSampleN := b.N
watcherN := k * benchSampleN
watchIDs := make([]WatchID, watcherN)
for i := 0; i < watcherN; i++ {
// non-0 value to keep watchers in unsynced
watchIDs[i] = w.Watch(testKey, nil, 1)
}
// random-cancel N watchers to make it not biased towards
// data structures with an order, such as slice.
ix := rand.Perm(watcherN)
b.ResetTimer()
b.ReportAllocs()
// cancel N watchers
for _, idx := range ix[:benchSampleN] {
if err := w.Cancel(watchIDs[idx]); err != nil {
b.Error(err)
}
}
}
func BenchmarkWatchableStoreSyncedCancel(b *testing.B) {
be, tmpPath := backend.NewDefaultTmpBackend()
s := newWatchableStore(be, &lease.FakeLessor{}, nil)
defer func() {
s.store.Close()
os.Remove(tmpPath)
}()
// Put a key so that we can spawn watchers on that key
testKey := []byte("foo")
testValue := []byte("bar")
s.Put(testKey, testValue, lease.NoLease)
w := s.NewWatchStream()
// put 1 million watchers on the same key
const watcherN = 1000000
watchIDs := make([]WatchID, watcherN)
for i := 0; i < watcherN; i++ {
// 0 for startRev to keep watchers in synced
watchIDs[i] = w.Watch(testKey, nil, 0)
}
// randomly cancel watchers to make it not biased towards
// data structures with an order, such as slice.
ix := rand.Perm(watcherN)
b.ResetTimer()
b.ReportAllocs()
for _, idx := range ix {
if err := w.Cancel(watchIDs[idx]); err != nil {
b.Error(err)
}
}
}