blob: c1cf7cc557cd0ab1d1c2eca98b3dd4a3d6863a8d [file] [log] [blame]
// Copyright 2015 The etcd Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package raft
import (
"bytes"
"fmt"
"math"
"math/rand"
"reflect"
"testing"
pb "github.com/coreos/etcd/raft/raftpb"
)
// nextEnts returns the appliable entries and updates the applied index
func nextEnts(r *raft, s *MemoryStorage) (ents []pb.Entry) {
// Transfer all unstable entries to "stable" storage.
s.Append(r.raftLog.unstableEntries())
r.raftLog.stableTo(r.raftLog.lastIndex(), r.raftLog.lastTerm())
ents = r.raftLog.nextEnts()
r.raftLog.appliedTo(r.raftLog.committed)
return ents
}
type stateMachine interface {
Step(m pb.Message) error
readMessages() []pb.Message
}
func (r *raft) readMessages() []pb.Message {
msgs := r.msgs
r.msgs = make([]pb.Message, 0)
return msgs
}
func TestProgressBecomeProbe(t *testing.T) {
match := uint64(1)
tests := []struct {
p *Progress
wnext uint64
}{
{
&Progress{State: ProgressStateReplicate, Match: match, Next: 5, ins: newInflights(256)},
2,
},
{
// snapshot finish
&Progress{State: ProgressStateSnapshot, Match: match, Next: 5, PendingSnapshot: 10, ins: newInflights(256)},
11,
},
{
// snapshot failure
&Progress{State: ProgressStateSnapshot, Match: match, Next: 5, PendingSnapshot: 0, ins: newInflights(256)},
2,
},
}
for i, tt := range tests {
tt.p.becomeProbe()
if tt.p.State != ProgressStateProbe {
t.Errorf("#%d: state = %s, want %s", i, tt.p.State, ProgressStateProbe)
}
if tt.p.Match != match {
t.Errorf("#%d: match = %d, want %d", i, tt.p.Match, match)
}
if tt.p.Next != tt.wnext {
t.Errorf("#%d: next = %d, want %d", i, tt.p.Next, tt.wnext)
}
}
}
func TestProgressBecomeReplicate(t *testing.T) {
p := &Progress{State: ProgressStateProbe, Match: 1, Next: 5, ins: newInflights(256)}
p.becomeReplicate()
if p.State != ProgressStateReplicate {
t.Errorf("state = %s, want %s", p.State, ProgressStateReplicate)
}
if p.Match != 1 {
t.Errorf("match = %d, want 1", p.Match)
}
if w := p.Match + 1; p.Next != w {
t.Errorf("next = %d, want %d", p.Next, w)
}
}
func TestProgressBecomeSnapshot(t *testing.T) {
p := &Progress{State: ProgressStateProbe, Match: 1, Next: 5, ins: newInflights(256)}
p.becomeSnapshot(10)
if p.State != ProgressStateSnapshot {
t.Errorf("state = %s, want %s", p.State, ProgressStateSnapshot)
}
if p.Match != 1 {
t.Errorf("match = %d, want 1", p.Match)
}
if p.PendingSnapshot != 10 {
t.Errorf("pendingSnapshot = %d, want 10", p.PendingSnapshot)
}
}
func TestProgressUpdate(t *testing.T) {
prevM, prevN := uint64(3), uint64(5)
tests := []struct {
update uint64
wm uint64
wn uint64
wok bool
}{
{prevM - 1, prevM, prevN, false}, // do not decrease match, next
{prevM, prevM, prevN, false}, // do not decrease next
{prevM + 1, prevM + 1, prevN, true}, // increase match, do not decrease next
{prevM + 2, prevM + 2, prevN + 1, true}, // increase match, next
}
for i, tt := range tests {
p := &Progress{
Match: prevM,
Next: prevN,
}
ok := p.maybeUpdate(tt.update)
if ok != tt.wok {
t.Errorf("#%d: ok= %v, want %v", i, ok, tt.wok)
}
if p.Match != tt.wm {
t.Errorf("#%d: match= %d, want %d", i, p.Match, tt.wm)
}
if p.Next != tt.wn {
t.Errorf("#%d: next= %d, want %d", i, p.Next, tt.wn)
}
}
}
func TestProgressMaybeDecr(t *testing.T) {
tests := []struct {
state ProgressStateType
m uint64
n uint64
rejected uint64
last uint64
w bool
wn uint64
}{
{
// state replicate and rejected is not greater than match
ProgressStateReplicate, 5, 10, 5, 5, false, 10,
},
{
// state replicate and rejected is not greater than match
ProgressStateReplicate, 5, 10, 4, 4, false, 10,
},
{
// state replicate and rejected is greater than match
// directly decrease to match+1
ProgressStateReplicate, 5, 10, 9, 9, true, 6,
},
{
// next-1 != rejected is always false
ProgressStateProbe, 0, 0, 0, 0, false, 0,
},
{
// next-1 != rejected is always false
ProgressStateProbe, 0, 10, 5, 5, false, 10,
},
{
// next>1 = decremented by 1
ProgressStateProbe, 0, 10, 9, 9, true, 9,
},
{
// next>1 = decremented by 1
ProgressStateProbe, 0, 2, 1, 1, true, 1,
},
{
// next<=1 = reset to 1
ProgressStateProbe, 0, 1, 0, 0, true, 1,
},
{
// decrease to min(rejected, last+1)
ProgressStateProbe, 0, 10, 9, 2, true, 3,
},
{
// rejected < 1, reset to 1
ProgressStateProbe, 0, 10, 9, 0, true, 1,
},
}
for i, tt := range tests {
p := &Progress{
State: tt.state,
Match: tt.m,
Next: tt.n,
}
if g := p.maybeDecrTo(tt.rejected, tt.last); g != tt.w {
t.Errorf("#%d: maybeDecrTo= %t, want %t", i, g, tt.w)
}
if gm := p.Match; gm != tt.m {
t.Errorf("#%d: match= %d, want %d", i, gm, tt.m)
}
if gn := p.Next; gn != tt.wn {
t.Errorf("#%d: next= %d, want %d", i, gn, tt.wn)
}
}
}
func TestProgressIsPaused(t *testing.T) {
tests := []struct {
state ProgressStateType
paused bool
w bool
}{
{ProgressStateProbe, false, false},
{ProgressStateProbe, true, true},
{ProgressStateReplicate, false, false},
{ProgressStateReplicate, true, false},
{ProgressStateSnapshot, false, true},
{ProgressStateSnapshot, true, true},
}
for i, tt := range tests {
p := &Progress{
State: tt.state,
Paused: tt.paused,
ins: newInflights(256),
}
if g := p.IsPaused(); g != tt.w {
t.Errorf("#%d: paused= %t, want %t", i, g, tt.w)
}
}
}
// TestProgressResume ensures that progress.maybeUpdate and progress.maybeDecrTo
// will reset progress.paused.
func TestProgressResume(t *testing.T) {
p := &Progress{
Next: 2,
Paused: true,
}
p.maybeDecrTo(1, 1)
if p.Paused {
t.Errorf("paused= %v, want false", p.Paused)
}
p.Paused = true
p.maybeUpdate(2)
if p.Paused {
t.Errorf("paused= %v, want false", p.Paused)
}
}
// TestProgressResumeByHeartbeatResp ensures raft.heartbeat reset progress.paused by heartbeat response.
func TestProgressResumeByHeartbeatResp(t *testing.T) {
r := newTestRaft(1, []uint64{1, 2}, 5, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
r.prs[2].Paused = true
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
if !r.prs[2].Paused {
t.Errorf("paused = %v, want true", r.prs[2].Paused)
}
r.prs[2].becomeReplicate()
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeatResp})
if r.prs[2].Paused {
t.Errorf("paused = %v, want false", r.prs[2].Paused)
}
}
func TestProgressPaused(t *testing.T) {
r := newTestRaft(1, []uint64{1, 2}, 5, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
ms := r.readMessages()
if len(ms) != 1 {
t.Errorf("len(ms) = %d, want 1", len(ms))
}
}
func TestLeaderElection(t *testing.T) {
testLeaderElection(t, false)
}
func TestLeaderElectionPreVote(t *testing.T) {
testLeaderElection(t, true)
}
func testLeaderElection(t *testing.T, preVote bool) {
var cfg func(*Config)
if preVote {
cfg = preVoteConfig
}
tests := []struct {
*network
state StateType
expTerm uint64
}{
{newNetworkWithConfig(cfg, nil, nil, nil), StateLeader, 1},
{newNetworkWithConfig(cfg, nil, nil, nopStepper), StateLeader, 1},
{newNetworkWithConfig(cfg, nil, nopStepper, nopStepper), StateCandidate, 1},
{newNetworkWithConfig(cfg, nil, nopStepper, nopStepper, nil), StateCandidate, 1},
{newNetworkWithConfig(cfg, nil, nopStepper, nopStepper, nil, nil), StateLeader, 1},
// three logs further along than 0, but in the same term so rejections
// are returned instead of the votes being ignored.
{newNetworkWithConfig(cfg,
nil, entsWithConfig(cfg, 1), entsWithConfig(cfg, 1), entsWithConfig(cfg, 1, 1), nil),
StateFollower, 1},
}
for i, tt := range tests {
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := tt.network.peers[1].(*raft)
var expState StateType
var expTerm uint64
if tt.state == StateCandidate && preVote {
// In pre-vote mode, an election that fails to complete
// leaves the node in pre-candidate state without advancing
// the term.
expState = StatePreCandidate
expTerm = 0
} else {
expState = tt.state
expTerm = tt.expTerm
}
if sm.state != expState {
t.Errorf("#%d: state = %s, want %s", i, sm.state, expState)
}
if g := sm.Term; g != expTerm {
t.Errorf("#%d: term = %d, want %d", i, g, expTerm)
}
}
}
// TestLearnerElectionTimeout verfies that the leader should not start election even
// when times out.
func TestLearnerElectionTimeout(t *testing.T) {
n1 := newTestLearnerRaft(1, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n2 := newTestLearnerRaft(2, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
// n2 is learner. Learner should not start election even when times out.
setRandomizedElectionTimeout(n2, n2.electionTimeout)
for i := 0; i < n2.electionTimeout; i++ {
n2.tick()
}
if n2.state != StateFollower {
t.Errorf("peer 2 state: %s, want %s", n2.state, StateFollower)
}
}
// TestLearnerPromotion verifies that the leaner should not election until
// it is promoted to a normal peer.
func TestLearnerPromotion(t *testing.T) {
n1 := newTestLearnerRaft(1, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n2 := newTestLearnerRaft(2, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
nt := newNetwork(n1, n2)
if n1.state == StateLeader {
t.Error("peer 1 state is leader, want not", n1.state)
}
// n1 should become leader
setRandomizedElectionTimeout(n1, n1.electionTimeout)
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
if n1.state != StateLeader {
t.Errorf("peer 1 state: %s, want %s", n1.state, StateLeader)
}
if n2.state != StateFollower {
t.Errorf("peer 2 state: %s, want %s", n2.state, StateFollower)
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
n1.addNode(2)
n2.addNode(2)
if n2.isLearner {
t.Error("peer 2 is learner, want not")
}
// n2 start election, should become leader
setRandomizedElectionTimeout(n2, n2.electionTimeout)
for i := 0; i < n2.electionTimeout; i++ {
n2.tick()
}
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgBeat})
if n1.state != StateFollower {
t.Errorf("peer 1 state: %s, want %s", n1.state, StateFollower)
}
if n2.state != StateLeader {
t.Errorf("peer 2 state: %s, want %s", n2.state, StateLeader)
}
}
// TestLearnerCannotVote checks that a learner can't vote even it receives a valid Vote request.
func TestLearnerCannotVote(t *testing.T) {
n2 := newTestLearnerRaft(2, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n2.becomeFollower(1, None)
n2.Step(pb.Message{From: 1, To: 2, Term: 2, Type: pb.MsgVote, LogTerm: 11, Index: 11})
if len(n2.msgs) != 0 {
t.Errorf("expect learner not to vote, but received %v messages", n2.msgs)
}
}
func TestLeaderCycle(t *testing.T) {
testLeaderCycle(t, false)
}
func TestLeaderCyclePreVote(t *testing.T) {
testLeaderCycle(t, true)
}
// testLeaderCycle verifies that each node in a cluster can campaign
// and be elected in turn. This ensures that elections (including
// pre-vote) work when not starting from a clean slate (as they do in
// TestLeaderElection)
func testLeaderCycle(t *testing.T, preVote bool) {
var cfg func(*Config)
if preVote {
cfg = preVoteConfig
}
n := newNetworkWithConfig(cfg, nil, nil, nil)
for campaignerID := uint64(1); campaignerID <= 3; campaignerID++ {
n.send(pb.Message{From: campaignerID, To: campaignerID, Type: pb.MsgHup})
for _, peer := range n.peers {
sm := peer.(*raft)
if sm.id == campaignerID && sm.state != StateLeader {
t.Errorf("preVote=%v: campaigning node %d state = %v, want StateLeader",
preVote, sm.id, sm.state)
} else if sm.id != campaignerID && sm.state != StateFollower {
t.Errorf("preVote=%v: after campaign of node %d, "+
"node %d had state = %v, want StateFollower",
preVote, campaignerID, sm.id, sm.state)
}
}
}
}
// TestLeaderElectionOverwriteNewerLogs tests a scenario in which a
// newly-elected leader does *not* have the newest (i.e. highest term)
// log entries, and must overwrite higher-term log entries with
// lower-term ones.
func TestLeaderElectionOverwriteNewerLogs(t *testing.T) {
testLeaderElectionOverwriteNewerLogs(t, false)
}
func TestLeaderElectionOverwriteNewerLogsPreVote(t *testing.T) {
testLeaderElectionOverwriteNewerLogs(t, true)
}
func testLeaderElectionOverwriteNewerLogs(t *testing.T, preVote bool) {
var cfg func(*Config)
if preVote {
cfg = preVoteConfig
}
// This network represents the results of the following sequence of
// events:
// - Node 1 won the election in term 1.
// - Node 1 replicated a log entry to node 2 but died before sending
// it to other nodes.
// - Node 3 won the second election in term 2.
// - Node 3 wrote an entry to its logs but died without sending it
// to any other nodes.
//
// At this point, nodes 1, 2, and 3 all have uncommitted entries in
// their logs and could win an election at term 3. The winner's log
// entry overwrites the losers'. (TestLeaderSyncFollowerLog tests
// the case where older log entries are overwritten, so this test
// focuses on the case where the newer entries are lost).
n := newNetworkWithConfig(cfg,
entsWithConfig(cfg, 1), // Node 1: Won first election
entsWithConfig(cfg, 1), // Node 2: Got logs from node 1
entsWithConfig(cfg, 2), // Node 3: Won second election
votedWithConfig(cfg, 3, 2), // Node 4: Voted but didn't get logs
votedWithConfig(cfg, 3, 2)) // Node 5: Voted but didn't get logs
// Node 1 campaigns. The election fails because a quorum of nodes
// know about the election that already happened at term 2. Node 1's
// term is pushed ahead to 2.
n.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm1 := n.peers[1].(*raft)
if sm1.state != StateFollower {
t.Errorf("state = %s, want StateFollower", sm1.state)
}
if sm1.Term != 2 {
t.Errorf("term = %d, want 2", sm1.Term)
}
// Node 1 campaigns again with a higher term. This time it succeeds.
n.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if sm1.state != StateLeader {
t.Errorf("state = %s, want StateLeader", sm1.state)
}
if sm1.Term != 3 {
t.Errorf("term = %d, want 3", sm1.Term)
}
// Now all nodes agree on a log entry with term 1 at index 1 (and
// term 3 at index 2).
for i := range n.peers {
sm := n.peers[i].(*raft)
entries := sm.raftLog.allEntries()
if len(entries) != 2 {
t.Fatalf("node %d: len(entries) == %d, want 2", i, len(entries))
}
if entries[0].Term != 1 {
t.Errorf("node %d: term at index 1 == %d, want 1", i, entries[0].Term)
}
if entries[1].Term != 3 {
t.Errorf("node %d: term at index 2 == %d, want 3", i, entries[1].Term)
}
}
}
func TestVoteFromAnyState(t *testing.T) {
testVoteFromAnyState(t, pb.MsgVote)
}
func TestPreVoteFromAnyState(t *testing.T) {
testVoteFromAnyState(t, pb.MsgPreVote)
}
func testVoteFromAnyState(t *testing.T, vt pb.MessageType) {
for st := StateType(0); st < numStates; st++ {
r := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
r.Term = 1
switch st {
case StateFollower:
r.becomeFollower(r.Term, 3)
case StatePreCandidate:
r.becomePreCandidate()
case StateCandidate:
r.becomeCandidate()
case StateLeader:
r.becomeCandidate()
r.becomeLeader()
}
// Note that setting our state above may have advanced r.Term
// past its initial value.
origTerm := r.Term
newTerm := r.Term + 1
msg := pb.Message{
From: 2,
To: 1,
Type: vt,
Term: newTerm,
LogTerm: newTerm,
Index: 42,
}
if err := r.Step(msg); err != nil {
t.Errorf("%s,%s: Step failed: %s", vt, st, err)
}
if len(r.msgs) != 1 {
t.Errorf("%s,%s: %d response messages, want 1: %+v", vt, st, len(r.msgs), r.msgs)
} else {
resp := r.msgs[0]
if resp.Type != voteRespMsgType(vt) {
t.Errorf("%s,%s: response message is %s, want %s",
vt, st, resp.Type, voteRespMsgType(vt))
}
if resp.Reject {
t.Errorf("%s,%s: unexpected rejection", vt, st)
}
}
// If this was a real vote, we reset our state and term.
if vt == pb.MsgVote {
if r.state != StateFollower {
t.Errorf("%s,%s: state %s, want %s", vt, st, r.state, StateFollower)
}
if r.Term != newTerm {
t.Errorf("%s,%s: term %d, want %d", vt, st, r.Term, newTerm)
}
if r.Vote != 2 {
t.Errorf("%s,%s: vote %d, want 2", vt, st, r.Vote)
}
} else {
// In a prevote, nothing changes.
if r.state != st {
t.Errorf("%s,%s: state %s, want %s", vt, st, r.state, st)
}
if r.Term != origTerm {
t.Errorf("%s,%s: term %d, want %d", vt, st, r.Term, origTerm)
}
// if st == StateFollower or StatePreCandidate, r hasn't voted yet.
// In StateCandidate or StateLeader, it's voted for itself.
if r.Vote != None && r.Vote != 1 {
t.Errorf("%s,%s: vote %d, want %d or 1", vt, st, r.Vote, None)
}
}
}
}
func TestLogReplication(t *testing.T) {
tests := []struct {
*network
msgs []pb.Message
wcommitted uint64
}{
{
newNetwork(nil, nil, nil),
[]pb.Message{
{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}},
},
2,
},
{
newNetwork(nil, nil, nil),
[]pb.Message{
{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}},
{From: 1, To: 2, Type: pb.MsgHup},
{From: 1, To: 2, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}},
},
4,
},
}
for i, tt := range tests {
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
for _, m := range tt.msgs {
tt.send(m)
}
for j, x := range tt.network.peers {
sm := x.(*raft)
if sm.raftLog.committed != tt.wcommitted {
t.Errorf("#%d.%d: committed = %d, want %d", i, j, sm.raftLog.committed, tt.wcommitted)
}
ents := []pb.Entry{}
for _, e := range nextEnts(sm, tt.network.storage[j]) {
if e.Data != nil {
ents = append(ents, e)
}
}
props := []pb.Message{}
for _, m := range tt.msgs {
if m.Type == pb.MsgProp {
props = append(props, m)
}
}
for k, m := range props {
if !bytes.Equal(ents[k].Data, m.Entries[0].Data) {
t.Errorf("#%d.%d: data = %d, want %d", i, j, ents[k].Data, m.Entries[0].Data)
}
}
}
}
}
// TestLearnerLogReplication tests that a learner can receive entries from the leader.
func TestLearnerLogReplication(t *testing.T) {
n1 := newTestLearnerRaft(1, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n2 := newTestLearnerRaft(2, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
nt := newNetwork(n1, n2)
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
setRandomizedElectionTimeout(n1, n1.electionTimeout)
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
// n1 is leader and n2 is learner
if n1.state != StateLeader {
t.Errorf("peer 1 state: %s, want %s", n1.state, StateLeader)
}
if !n2.isLearner {
t.Error("peer 2 state: not learner, want yes")
}
nextCommitted := n1.raftLog.committed + 1
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
if n1.raftLog.committed != nextCommitted {
t.Errorf("peer 1 wants committed to %d, but still %d", nextCommitted, n1.raftLog.committed)
}
if n1.raftLog.committed != n2.raftLog.committed {
t.Errorf("peer 2 wants committed to %d, but still %d", n1.raftLog.committed, n2.raftLog.committed)
}
match := n1.getProgress(2).Match
if match != n2.raftLog.committed {
t.Errorf("progresss 2 of leader 1 wants match %d, but got %d", n2.raftLog.committed, match)
}
}
func TestSingleNodeCommit(t *testing.T) {
tt := newNetwork(nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
sm := tt.peers[1].(*raft)
if sm.raftLog.committed != 3 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 3)
}
}
// TestCannotCommitWithoutNewTermEntry tests the entries cannot be committed
// when leader changes, no new proposal comes in and ChangeTerm proposal is
// filtered.
func TestCannotCommitWithoutNewTermEntry(t *testing.T) {
tt := newNetwork(nil, nil, nil, nil, nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// 0 cannot reach 2,3,4
tt.cut(1, 3)
tt.cut(1, 4)
tt.cut(1, 5)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
sm := tt.peers[1].(*raft)
if sm.raftLog.committed != 1 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1)
}
// network recovery
tt.recover()
// avoid committing ChangeTerm proposal
tt.ignore(pb.MsgApp)
// elect 2 as the new leader with term 2
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// no log entries from previous term should be committed
sm = tt.peers[2].(*raft)
if sm.raftLog.committed != 1 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1)
}
tt.recover()
// send heartbeat; reset wait
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgBeat})
// append an entry at current term
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
// expect the committed to be advanced
if sm.raftLog.committed != 5 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 5)
}
}
// TestCommitWithoutNewTermEntry tests the entries could be committed
// when leader changes, no new proposal comes in.
func TestCommitWithoutNewTermEntry(t *testing.T) {
tt := newNetwork(nil, nil, nil, nil, nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// 0 cannot reach 2,3,4
tt.cut(1, 3)
tt.cut(1, 4)
tt.cut(1, 5)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("some data")}}})
sm := tt.peers[1].(*raft)
if sm.raftLog.committed != 1 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 1)
}
// network recovery
tt.recover()
// elect 1 as the new leader with term 2
// after append a ChangeTerm entry from the current term, all entries
// should be committed
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
if sm.raftLog.committed != 4 {
t.Errorf("committed = %d, want %d", sm.raftLog.committed, 4)
}
}
func TestDuelingCandidates(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
c := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
nt := newNetwork(a, b, c)
nt.cut(1, 3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// 1 becomes leader since it receives votes from 1 and 2
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %s, want %s", sm.state, StateLeader)
}
// 3 stays as candidate since it receives a vote from 3 and a rejection from 2
sm = nt.peers[3].(*raft)
if sm.state != StateCandidate {
t.Errorf("state = %s, want %s", sm.state, StateCandidate)
}
nt.recover()
// candidate 3 now increases its term and tries to vote again
// we expect it to disrupt the leader 1 since it has a higher term
// 3 will be follower again since both 1 and 2 rejects its vote request since 3 does not have a long enough log
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
wlog := &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}}},
committed: 1,
unstable: unstable{offset: 2},
}
tests := []struct {
sm *raft
state StateType
term uint64
raftLog *raftLog
}{
{a, StateFollower, 2, wlog},
{b, StateFollower, 2, wlog},
{c, StateFollower, 2, newLog(NewMemoryStorage(), raftLogger)},
}
for i, tt := range tests {
if g := tt.sm.state; g != tt.state {
t.Errorf("#%d: state = %s, want %s", i, g, tt.state)
}
if g := tt.sm.Term; g != tt.term {
t.Errorf("#%d: term = %d, want %d", i, g, tt.term)
}
base := ltoa(tt.raftLog)
if sm, ok := nt.peers[1+uint64(i)].(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
func TestDuelingPreCandidates(t *testing.T) {
cfgA := newTestConfig(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
cfgB := newTestConfig(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
cfgC := newTestConfig(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
cfgA.PreVote = true
cfgB.PreVote = true
cfgC.PreVote = true
a := newRaft(cfgA)
b := newRaft(cfgB)
c := newRaft(cfgC)
nt := newNetwork(a, b, c)
nt.cut(1, 3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// 1 becomes leader since it receives votes from 1 and 2
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %s, want %s", sm.state, StateLeader)
}
// 3 campaigns then reverts to follower when its PreVote is rejected
sm = nt.peers[3].(*raft)
if sm.state != StateFollower {
t.Errorf("state = %s, want %s", sm.state, StateFollower)
}
nt.recover()
// Candidate 3 now increases its term and tries to vote again.
// With PreVote, it does not disrupt the leader.
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
wlog := &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}}},
committed: 1,
unstable: unstable{offset: 2},
}
tests := []struct {
sm *raft
state StateType
term uint64
raftLog *raftLog
}{
{a, StateLeader, 1, wlog},
{b, StateFollower, 1, wlog},
{c, StateFollower, 1, newLog(NewMemoryStorage(), raftLogger)},
}
for i, tt := range tests {
if g := tt.sm.state; g != tt.state {
t.Errorf("#%d: state = %s, want %s", i, g, tt.state)
}
if g := tt.sm.Term; g != tt.term {
t.Errorf("#%d: term = %d, want %d", i, g, tt.term)
}
base := ltoa(tt.raftLog)
if sm, ok := nt.peers[1+uint64(i)].(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
func TestCandidateConcede(t *testing.T) {
tt := newNetwork(nil, nil, nil)
tt.isolate(1)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// heal the partition
tt.recover()
// send heartbeat; reset wait
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgBeat})
data := []byte("force follower")
// send a proposal to 3 to flush out a MsgApp to 1
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
// send heartbeat; flush out commit
tt.send(pb.Message{From: 3, To: 3, Type: pb.MsgBeat})
a := tt.peers[1].(*raft)
if g := a.state; g != StateFollower {
t.Errorf("state = %s, want %s", g, StateFollower)
}
if g := a.Term; g != 1 {
t.Errorf("term = %d, want %d", g, 1)
}
wantLog := ltoa(&raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Index: 2, Data: data}},
},
unstable: unstable{offset: 3},
committed: 2,
})
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(wantLog, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
func TestSingleNodeCandidate(t *testing.T) {
tt := newNetwork(nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := tt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %d, want %d", sm.state, StateLeader)
}
}
func TestSingleNodePreCandidate(t *testing.T) {
tt := newNetworkWithConfig(preVoteConfig, nil)
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := tt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("state = %d, want %d", sm.state, StateLeader)
}
}
func TestOldMessages(t *testing.T) {
tt := newNetwork(nil, nil, nil)
// make 0 leader @ term 3
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// pretend we're an old leader trying to make progress; this entry is expected to be ignored.
tt.send(pb.Message{From: 2, To: 1, Type: pb.MsgApp, Term: 2, Entries: []pb.Entry{{Index: 3, Term: 2}}})
// commit a new entry
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
ilog := &raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{
{}, {Data: nil, Term: 1, Index: 1},
{Data: nil, Term: 2, Index: 2}, {Data: nil, Term: 3, Index: 3},
{Data: []byte("somedata"), Term: 3, Index: 4},
},
},
unstable: unstable{offset: 5},
committed: 4,
}
base := ltoa(ilog)
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
}
// TestOldMessagesReply - optimization - reply with new term.
func TestProposal(t *testing.T) {
tests := []struct {
*network
success bool
}{
{newNetwork(nil, nil, nil), true},
{newNetwork(nil, nil, nopStepper), true},
{newNetwork(nil, nopStepper, nopStepper), false},
{newNetwork(nil, nopStepper, nopStepper, nil), false},
{newNetwork(nil, nopStepper, nopStepper, nil, nil), true},
}
for j, tt := range tests {
send := func(m pb.Message) {
defer func() {
// only recover is we expect it to panic so
// panics we don't expect go up.
if !tt.success {
e := recover()
if e != nil {
t.Logf("#%d: err: %s", j, e)
}
}
}()
tt.send(m)
}
data := []byte("somedata")
// promote 0 the leader
send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
wantLog := newLog(NewMemoryStorage(), raftLogger)
if tt.success {
wantLog = &raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Index: 2, Data: data}},
},
unstable: unstable{offset: 3},
committed: 2}
}
base := ltoa(wantLog)
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
sm := tt.network.peers[1].(*raft)
if g := sm.Term; g != 1 {
t.Errorf("#%d: term = %d, want %d", j, g, 1)
}
}
}
func TestProposalByProxy(t *testing.T) {
data := []byte("somedata")
tests := []*network{
newNetwork(nil, nil, nil),
newNetwork(nil, nil, nopStepper),
}
for j, tt := range tests {
// promote 0 the leader
tt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// propose via follower
tt.send(pb.Message{From: 2, To: 2, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
wantLog := &raftLog{
storage: &MemoryStorage{
ents: []pb.Entry{{}, {Data: nil, Term: 1, Index: 1}, {Term: 1, Data: data, Index: 2}},
},
unstable: unstable{offset: 3},
committed: 2}
base := ltoa(wantLog)
for i, p := range tt.peers {
if sm, ok := p.(*raft); ok {
l := ltoa(sm.raftLog)
if g := diffu(base, l); g != "" {
t.Errorf("#%d: diff:\n%s", i, g)
}
} else {
t.Logf("#%d: empty log", i)
}
}
sm := tt.peers[1].(*raft)
if g := sm.Term; g != 1 {
t.Errorf("#%d: term = %d, want %d", j, g, 1)
}
}
}
func TestCommit(t *testing.T) {
tests := []struct {
matches []uint64
logs []pb.Entry
smTerm uint64
w uint64
}{
// single
{[]uint64{1}, []pb.Entry{{Index: 1, Term: 1}}, 1, 1},
{[]uint64{1}, []pb.Entry{{Index: 1, Term: 1}}, 2, 0},
{[]uint64{2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 2, 2},
{[]uint64{1}, []pb.Entry{{Index: 1, Term: 2}}, 2, 1},
// odd
{[]uint64{2, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 1, 1},
{[]uint64{2, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
{[]uint64{2, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 2, 2},
{[]uint64{2, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
// even
{[]uint64{2, 1, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 1, 1},
{[]uint64{2, 1, 1, 1}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
{[]uint64{2, 1, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 1, 1},
{[]uint64{2, 1, 1, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
{[]uint64{2, 1, 2, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}}, 2, 2},
{[]uint64{2, 1, 2, 2}, []pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}}, 2, 0},
}
for i, tt := range tests {
storage := NewMemoryStorage()
storage.Append(tt.logs)
storage.hardState = pb.HardState{Term: tt.smTerm}
sm := newTestRaft(1, []uint64{1}, 5, 1, storage)
for j := 0; j < len(tt.matches); j++ {
sm.setProgress(uint64(j)+1, tt.matches[j], tt.matches[j]+1, false)
}
sm.maybeCommit()
if g := sm.raftLog.committed; g != tt.w {
t.Errorf("#%d: committed = %d, want %d", i, g, tt.w)
}
}
}
func TestPastElectionTimeout(t *testing.T) {
tests := []struct {
elapse int
wprobability float64
round bool
}{
{5, 0, false},
{10, 0.1, true},
{13, 0.4, true},
{15, 0.6, true},
{18, 0.9, true},
{20, 1, false},
}
for i, tt := range tests {
sm := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
sm.electionElapsed = tt.elapse
c := 0
for j := 0; j < 10000; j++ {
sm.resetRandomizedElectionTimeout()
if sm.pastElectionTimeout() {
c++
}
}
got := float64(c) / 10000.0
if tt.round {
got = math.Floor(got*10+0.5) / 10.0
}
if got != tt.wprobability {
t.Errorf("#%d: probability = %v, want %v", i, got, tt.wprobability)
}
}
}
// ensure that the Step function ignores the message from old term and does not pass it to the
// actual stepX function.
func TestStepIgnoreOldTermMsg(t *testing.T) {
called := false
fakeStep := func(r *raft, m pb.Message) {
called = true
}
sm := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
sm.step = fakeStep
sm.Term = 2
sm.Step(pb.Message{Type: pb.MsgApp, Term: sm.Term - 1})
if called {
t.Errorf("stepFunc called = %v , want %v", called, false)
}
}
// TestHandleMsgApp ensures:
// 1. Reply false if log doesn’t contain an entry at prevLogIndex whose term matches prevLogTerm.
// 2. If an existing entry conflicts with a new one (same index but different terms),
// delete the existing entry and all that follow it; append any new entries not already in the log.
// 3. If leaderCommit > commitIndex, set commitIndex = min(leaderCommit, index of last new entry).
func TestHandleMsgApp(t *testing.T) {
tests := []struct {
m pb.Message
wIndex uint64
wCommit uint64
wReject bool
}{
// Ensure 1
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 3, Index: 2, Commit: 3}, 2, 0, true}, // previous log mismatch
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 3, Index: 3, Commit: 3}, 2, 0, true}, // previous log non-exist
// Ensure 2
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 1, Index: 1, Commit: 1}, 2, 1, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 0, Index: 0, Commit: 1, Entries: []pb.Entry{{Index: 1, Term: 2}}}, 1, 1, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 3, Entries: []pb.Entry{{Index: 3, Term: 2}, {Index: 4, Term: 2}}}, 4, 3, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 4, Entries: []pb.Entry{{Index: 3, Term: 2}}}, 3, 3, false},
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 1, Index: 1, Commit: 4, Entries: []pb.Entry{{Index: 2, Term: 2}}}, 2, 2, false},
// Ensure 3
{pb.Message{Type: pb.MsgApp, Term: 1, LogTerm: 1, Index: 1, Commit: 3}, 2, 1, false}, // match entry 1, commit up to last new entry 1
{pb.Message{Type: pb.MsgApp, Term: 1, LogTerm: 1, Index: 1, Commit: 3, Entries: []pb.Entry{{Index: 2, Term: 2}}}, 2, 2, false}, // match entry 1, commit up to last new entry 2
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 3}, 2, 2, false}, // match entry 2, commit up to last new entry 2
{pb.Message{Type: pb.MsgApp, Term: 2, LogTerm: 2, Index: 2, Commit: 4}, 2, 2, false}, // commit up to log.last()
}
for i, tt := range tests {
storage := NewMemoryStorage()
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}})
sm := newTestRaft(1, []uint64{1}, 10, 1, storage)
sm.becomeFollower(2, None)
sm.handleAppendEntries(tt.m)
if sm.raftLog.lastIndex() != tt.wIndex {
t.Errorf("#%d: lastIndex = %d, want %d", i, sm.raftLog.lastIndex(), tt.wIndex)
}
if sm.raftLog.committed != tt.wCommit {
t.Errorf("#%d: committed = %d, want %d", i, sm.raftLog.committed, tt.wCommit)
}
m := sm.readMessages()
if len(m) != 1 {
t.Fatalf("#%d: msg = nil, want 1", i)
}
if m[0].Reject != tt.wReject {
t.Errorf("#%d: reject = %v, want %v", i, m[0].Reject, tt.wReject)
}
}
}
// TestHandleHeartbeat ensures that the follower commits to the commit in the message.
func TestHandleHeartbeat(t *testing.T) {
commit := uint64(2)
tests := []struct {
m pb.Message
wCommit uint64
}{
{pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeat, Term: 2, Commit: commit + 1}, commit + 1},
{pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeat, Term: 2, Commit: commit - 1}, commit}, // do not decrease commit
}
for i, tt := range tests {
storage := NewMemoryStorage()
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}, {Index: 3, Term: 3}})
sm := newTestRaft(1, []uint64{1, 2}, 5, 1, storage)
sm.becomeFollower(2, 2)
sm.raftLog.commitTo(commit)
sm.handleHeartbeat(tt.m)
if sm.raftLog.committed != tt.wCommit {
t.Errorf("#%d: committed = %d, want %d", i, sm.raftLog.committed, tt.wCommit)
}
m := sm.readMessages()
if len(m) != 1 {
t.Fatalf("#%d: msg = nil, want 1", i)
}
if m[0].Type != pb.MsgHeartbeatResp {
t.Errorf("#%d: type = %v, want MsgHeartbeatResp", i, m[0].Type)
}
}
}
// TestHandleHeartbeatResp ensures that we re-send log entries when we get a heartbeat response.
func TestHandleHeartbeatResp(t *testing.T) {
storage := NewMemoryStorage()
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 2}, {Index: 3, Term: 3}})
sm := newTestRaft(1, []uint64{1, 2}, 5, 1, storage)
sm.becomeCandidate()
sm.becomeLeader()
sm.raftLog.commitTo(sm.raftLog.lastIndex())
// A heartbeat response from a node that is behind; re-send MsgApp
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp})
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
if msgs[0].Type != pb.MsgApp {
t.Errorf("type = %v, want MsgApp", msgs[0].Type)
}
// A second heartbeat response generates another MsgApp re-send
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp})
msgs = sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
if msgs[0].Type != pb.MsgApp {
t.Errorf("type = %v, want MsgApp", msgs[0].Type)
}
// Once we have an MsgAppResp, heartbeats no longer send MsgApp.
sm.Step(pb.Message{
From: 2,
Type: pb.MsgAppResp,
Index: msgs[0].Index + uint64(len(msgs[0].Entries)),
})
// Consume the message sent in response to MsgAppResp
sm.readMessages()
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp})
msgs = sm.readMessages()
if len(msgs) != 0 {
t.Fatalf("len(msgs) = %d, want 0: %+v", len(msgs), msgs)
}
}
// TestRaftFreesReadOnlyMem ensures raft will free read request from
// readOnly readIndexQueue and pendingReadIndex map.
// related issue: https://github.com/coreos/etcd/issues/7571
func TestRaftFreesReadOnlyMem(t *testing.T) {
sm := newTestRaft(1, []uint64{1, 2}, 5, 1, NewMemoryStorage())
sm.becomeCandidate()
sm.becomeLeader()
sm.raftLog.commitTo(sm.raftLog.lastIndex())
ctx := []byte("ctx")
// leader starts linearizable read request.
// more info: raft dissertation 6.4, step 2.
sm.Step(pb.Message{From: 2, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: ctx}}})
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
if msgs[0].Type != pb.MsgHeartbeat {
t.Fatalf("type = %v, want MsgHeartbeat", msgs[0].Type)
}
if !bytes.Equal(msgs[0].Context, ctx) {
t.Fatalf("Context = %v, want %v", msgs[0].Context, ctx)
}
if len(sm.readOnly.readIndexQueue) != 1 {
t.Fatalf("len(readIndexQueue) = %v, want 1", len(sm.readOnly.readIndexQueue))
}
if len(sm.readOnly.pendingReadIndex) != 1 {
t.Fatalf("len(pendingReadIndex) = %v, want 1", len(sm.readOnly.pendingReadIndex))
}
if _, ok := sm.readOnly.pendingReadIndex[string(ctx)]; !ok {
t.Fatalf("can't find context %v in pendingReadIndex ", ctx)
}
// heartbeat responses from majority of followers (1 in this case)
// acknowledge the authority of the leader.
// more info: raft dissertation 6.4, step 3.
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp, Context: ctx})
if len(sm.readOnly.readIndexQueue) != 0 {
t.Fatalf("len(readIndexQueue) = %v, want 0", len(sm.readOnly.readIndexQueue))
}
if len(sm.readOnly.pendingReadIndex) != 0 {
t.Fatalf("len(pendingReadIndex) = %v, want 0", len(sm.readOnly.pendingReadIndex))
}
if _, ok := sm.readOnly.pendingReadIndex[string(ctx)]; ok {
t.Fatalf("found context %v in pendingReadIndex, want none", ctx)
}
}
// TestMsgAppRespWaitReset verifies the resume behavior of a leader
// MsgAppResp.
func TestMsgAppRespWaitReset(t *testing.T) {
sm := newTestRaft(1, []uint64{1, 2, 3}, 5, 1, NewMemoryStorage())
sm.becomeCandidate()
sm.becomeLeader()
// The new leader has just emitted a new Term 4 entry; consume those messages
// from the outgoing queue.
sm.bcastAppend()
sm.readMessages()
// Node 2 acks the first entry, making it committed.
sm.Step(pb.Message{
From: 2,
Type: pb.MsgAppResp,
Index: 1,
})
if sm.raftLog.committed != 1 {
t.Fatalf("expected committed to be 1, got %d", sm.raftLog.committed)
}
// Also consume the MsgApp messages that update Commit on the followers.
sm.readMessages()
// A new command is now proposed on node 1.
sm.Step(pb.Message{
From: 1,
Type: pb.MsgProp,
Entries: []pb.Entry{{}},
})
// The command is broadcast to all nodes not in the wait state.
// Node 2 left the wait state due to its MsgAppResp, but node 3 is still waiting.
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("expected 1 message, got %d: %+v", len(msgs), msgs)
}
if msgs[0].Type != pb.MsgApp || msgs[0].To != 2 {
t.Errorf("expected MsgApp to node 2, got %v to %d", msgs[0].Type, msgs[0].To)
}
if len(msgs[0].Entries) != 1 || msgs[0].Entries[0].Index != 2 {
t.Errorf("expected to send entry 2, but got %v", msgs[0].Entries)
}
// Now Node 3 acks the first entry. This releases the wait and entry 2 is sent.
sm.Step(pb.Message{
From: 3,
Type: pb.MsgAppResp,
Index: 1,
})
msgs = sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("expected 1 message, got %d: %+v", len(msgs), msgs)
}
if msgs[0].Type != pb.MsgApp || msgs[0].To != 3 {
t.Errorf("expected MsgApp to node 3, got %v to %d", msgs[0].Type, msgs[0].To)
}
if len(msgs[0].Entries) != 1 || msgs[0].Entries[0].Index != 2 {
t.Errorf("expected to send entry 2, but got %v", msgs[0].Entries)
}
}
func TestRecvMsgVote(t *testing.T) {
testRecvMsgVote(t, pb.MsgVote)
}
func TestRecvMsgPreVote(t *testing.T) {
testRecvMsgVote(t, pb.MsgPreVote)
}
func testRecvMsgVote(t *testing.T, msgType pb.MessageType) {
tests := []struct {
state StateType
index, logTerm uint64
voteFor uint64
wreject bool
}{
{StateFollower, 0, 0, None, true},
{StateFollower, 0, 1, None, true},
{StateFollower, 0, 2, None, true},
{StateFollower, 0, 3, None, false},
{StateFollower, 1, 0, None, true},
{StateFollower, 1, 1, None, true},
{StateFollower, 1, 2, None, true},
{StateFollower, 1, 3, None, false},
{StateFollower, 2, 0, None, true},
{StateFollower, 2, 1, None, true},
{StateFollower, 2, 2, None, false},
{StateFollower, 2, 3, None, false},
{StateFollower, 3, 0, None, true},
{StateFollower, 3, 1, None, true},
{StateFollower, 3, 2, None, false},
{StateFollower, 3, 3, None, false},
{StateFollower, 3, 2, 2, false},
{StateFollower, 3, 2, 1, true},
{StateLeader, 3, 3, 1, true},
{StatePreCandidate, 3, 3, 1, true},
{StateCandidate, 3, 3, 1, true},
}
max := func(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
for i, tt := range tests {
sm := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
sm.state = tt.state
switch tt.state {
case StateFollower:
sm.step = stepFollower
case StateCandidate, StatePreCandidate:
sm.step = stepCandidate
case StateLeader:
sm.step = stepLeader
}
sm.Vote = tt.voteFor
sm.raftLog = &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Index: 1, Term: 2}, {Index: 2, Term: 2}}},
unstable: unstable{offset: 3},
}
// raft.Term is greater than or equal to raft.raftLog.lastTerm. In this
// test we're only testing MsgVote responses when the campaigning node
// has a different raft log compared to the recipient node.
// Additionally we're verifying behaviour when the recipient node has
// already given out its vote for its current term. We're not testing
// what the recipient node does when receiving a message with a
// different term number, so we simply initialize both term numbers to
// be the same.
term := max(sm.raftLog.lastTerm(), tt.logTerm)
sm.Term = term
sm.Step(pb.Message{Type: msgType, Term: term, From: 2, Index: tt.index, LogTerm: tt.logTerm})
msgs := sm.readMessages()
if g := len(msgs); g != 1 {
t.Fatalf("#%d: len(msgs) = %d, want 1", i, g)
continue
}
if g := msgs[0].Type; g != voteRespMsgType(msgType) {
t.Errorf("#%d, m.Type = %v, want %v", i, g, voteRespMsgType(msgType))
}
if g := msgs[0].Reject; g != tt.wreject {
t.Errorf("#%d, m.Reject = %v, want %v", i, g, tt.wreject)
}
}
}
func TestStateTransition(t *testing.T) {
tests := []struct {
from StateType
to StateType
wallow bool
wterm uint64
wlead uint64
}{
{StateFollower, StateFollower, true, 1, None},
{StateFollower, StatePreCandidate, true, 0, None},
{StateFollower, StateCandidate, true, 1, None},
{StateFollower, StateLeader, false, 0, None},
{StatePreCandidate, StateFollower, true, 0, None},
{StatePreCandidate, StatePreCandidate, true, 0, None},
{StatePreCandidate, StateCandidate, true, 1, None},
{StatePreCandidate, StateLeader, true, 0, 1},
{StateCandidate, StateFollower, true, 0, None},
{StateCandidate, StatePreCandidate, true, 0, None},
{StateCandidate, StateCandidate, true, 1, None},
{StateCandidate, StateLeader, true, 0, 1},
{StateLeader, StateFollower, true, 1, None},
{StateLeader, StatePreCandidate, false, 0, None},
{StateLeader, StateCandidate, false, 1, None},
{StateLeader, StateLeader, true, 0, 1},
}
for i, tt := range tests {
func() {
defer func() {
if r := recover(); r != nil {
if tt.wallow {
t.Errorf("%d: allow = %v, want %v", i, false, true)
}
}
}()
sm := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
sm.state = tt.from
switch tt.to {
case StateFollower:
sm.becomeFollower(tt.wterm, tt.wlead)
case StatePreCandidate:
sm.becomePreCandidate()
case StateCandidate:
sm.becomeCandidate()
case StateLeader:
sm.becomeLeader()
}
if sm.Term != tt.wterm {
t.Errorf("%d: term = %d, want %d", i, sm.Term, tt.wterm)
}
if sm.lead != tt.wlead {
t.Errorf("%d: lead = %d, want %d", i, sm.lead, tt.wlead)
}
}()
}
}
func TestAllServerStepdown(t *testing.T) {
tests := []struct {
state StateType
wstate StateType
wterm uint64
windex uint64
}{
{StateFollower, StateFollower, 3, 0},
{StatePreCandidate, StateFollower, 3, 0},
{StateCandidate, StateFollower, 3, 0},
{StateLeader, StateFollower, 3, 1},
}
tmsgTypes := [...]pb.MessageType{pb.MsgVote, pb.MsgApp}
tterm := uint64(3)
for i, tt := range tests {
sm := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
switch tt.state {
case StateFollower:
sm.becomeFollower(1, None)
case StatePreCandidate:
sm.becomePreCandidate()
case StateCandidate:
sm.becomeCandidate()
case StateLeader:
sm.becomeCandidate()
sm.becomeLeader()
}
for j, msgType := range tmsgTypes {
sm.Step(pb.Message{From: 2, Type: msgType, Term: tterm, LogTerm: tterm})
if sm.state != tt.wstate {
t.Errorf("#%d.%d state = %v , want %v", i, j, sm.state, tt.wstate)
}
if sm.Term != tt.wterm {
t.Errorf("#%d.%d term = %v , want %v", i, j, sm.Term, tt.wterm)
}
if uint64(sm.raftLog.lastIndex()) != tt.windex {
t.Errorf("#%d.%d index = %v , want %v", i, j, sm.raftLog.lastIndex(), tt.windex)
}
if uint64(len(sm.raftLog.allEntries())) != tt.windex {
t.Errorf("#%d.%d len(ents) = %v , want %v", i, j, len(sm.raftLog.allEntries()), tt.windex)
}
wlead := uint64(2)
if msgType == pb.MsgVote {
wlead = None
}
if sm.lead != wlead {
t.Errorf("#%d, sm.lead = %d, want %d", i, sm.lead, None)
}
}
}
}
func TestLeaderStepdownWhenQuorumActive(t *testing.T) {
sm := newTestRaft(1, []uint64{1, 2, 3}, 5, 1, NewMemoryStorage())
sm.checkQuorum = true
sm.becomeCandidate()
sm.becomeLeader()
for i := 0; i < sm.electionTimeout+1; i++ {
sm.Step(pb.Message{From: 2, Type: pb.MsgHeartbeatResp, Term: sm.Term})
sm.tick()
}
if sm.state != StateLeader {
t.Errorf("state = %v, want %v", sm.state, StateLeader)
}
}
func TestLeaderStepdownWhenQuorumLost(t *testing.T) {
sm := newTestRaft(1, []uint64{1, 2, 3}, 5, 1, NewMemoryStorage())
sm.checkQuorum = true
sm.becomeCandidate()
sm.becomeLeader()
for i := 0; i < sm.electionTimeout+1; i++ {
sm.tick()
}
if sm.state != StateFollower {
t.Errorf("state = %v, want %v", sm.state, StateFollower)
}
}
func TestLeaderSupersedingWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
c := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if c.state != StateFollower {
t.Errorf("state = %s, want %s", c.state, StateFollower)
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
// Peer b rejected c's vote since its electionElapsed had not reached to electionTimeout
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
// Letting b's electionElapsed reach to electionTimeout
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if c.state != StateLeader {
t.Errorf("state = %s, want %s", c.state, StateLeader)
}
}
func TestLeaderElectionWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
c := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(a, a.electionTimeout+1)
setRandomizedElectionTimeout(b, b.electionTimeout+2)
// Immediately after creation, votes are cast regardless of the
// election timeout.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if c.state != StateFollower {
t.Errorf("state = %s, want %s", c.state, StateFollower)
}
// need to reset randomizedElectionTimeout larger than electionTimeout again,
// because the value might be reset to electionTimeout since the last state changes
setRandomizedElectionTimeout(a, a.electionTimeout+1)
setRandomizedElectionTimeout(b, b.electionTimeout+2)
for i := 0; i < a.electionTimeout; i++ {
a.tick()
}
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if a.state != StateFollower {
t.Errorf("state = %s, want %s", a.state, StateFollower)
}
if c.state != StateLeader {
t.Errorf("state = %s, want %s", c.state, StateLeader)
}
}
// TestFreeStuckCandidateWithCheckQuorum ensures that a candidate with a higher term
// can disrupt the leader even if the leader still "officially" holds the lease, The
// leader is expected to step down and adopt the candidate's term
func TestFreeStuckCandidateWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
c := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(1)
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
if c.Term != b.Term+1 {
t.Errorf("term = %d, want %d", c.Term, b.Term+1)
}
// Vote again for safety
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if c.state != StateCandidate {
t.Errorf("state = %s, want %s", c.state, StateCandidate)
}
if c.Term != b.Term+2 {
t.Errorf("term = %d, want %d", c.Term, b.Term+2)
}
nt.recover()
nt.send(pb.Message{From: 1, To: 3, Type: pb.MsgHeartbeat, Term: a.Term})
// Disrupt the leader so that the stuck peer is freed
if a.state != StateFollower {
t.Errorf("state = %s, want %s", a.state, StateFollower)
}
if c.Term != a.Term {
t.Errorf("term = %d, want %d", c.Term, a.Term)
}
// Vote again, should become leader this time
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
if c.state != StateLeader {
t.Errorf("peer 3 state: %s, want %s", c.state, StateLeader)
}
}
func TestNonPromotableVoterWithCheckQuorum(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1}, 10, 1, NewMemoryStorage())
a.checkQuorum = true
b.checkQuorum = true
nt := newNetwork(a, b)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
// Need to remove 2 again to make it a non-promotable node since newNetwork overwritten some internal states
b.delProgress(2)
if b.promotable() {
t.Fatalf("promotable = %v, want false", b.promotable())
}
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Errorf("state = %s, want %s", a.state, StateLeader)
}
if b.state != StateFollower {
t.Errorf("state = %s, want %s", b.state, StateFollower)
}
if b.lead != 1 {
t.Errorf("lead = %d, want 1", b.lead)
}
}
func TestReadOnlyOptionSafe(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
c := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Fatalf("state = %s, want %s", a.state, StateLeader)
}
tests := []struct {
sm *raft
proposals int
wri uint64
wctx []byte
}{
{a, 10, 11, []byte("ctx1")},
{b, 10, 21, []byte("ctx2")},
{c, 10, 31, []byte("ctx3")},
{a, 10, 41, []byte("ctx4")},
{b, 10, 51, []byte("ctx5")},
{c, 10, 61, []byte("ctx6")},
}
for i, tt := range tests {
for j := 0; j < tt.proposals; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
nt.send(pb.Message{From: tt.sm.id, To: tt.sm.id, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: tt.wctx}}})
r := tt.sm
if len(r.readStates) == 0 {
t.Errorf("#%d: len(readStates) = 0, want non-zero", i)
}
rs := r.readStates[0]
if rs.Index != tt.wri {
t.Errorf("#%d: readIndex = %d, want %d", i, rs.Index, tt.wri)
}
if !bytes.Equal(rs.RequestCtx, tt.wctx) {
t.Errorf("#%d: requestCtx = %v, want %v", i, rs.RequestCtx, tt.wctx)
}
r.readStates = nil
}
}
func TestReadOnlyOptionLease(t *testing.T) {
a := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
b := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
c := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
a.readOnly.option = ReadOnlyLeaseBased
b.readOnly.option = ReadOnlyLeaseBased
c.readOnly.option = ReadOnlyLeaseBased
a.checkQuorum = true
b.checkQuorum = true
c.checkQuorum = true
nt := newNetwork(a, b, c)
setRandomizedElectionTimeout(b, b.electionTimeout+1)
for i := 0; i < b.electionTimeout; i++ {
b.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if a.state != StateLeader {
t.Fatalf("state = %s, want %s", a.state, StateLeader)
}
tests := []struct {
sm *raft
proposals int
wri uint64
wctx []byte
}{
{a, 10, 11, []byte("ctx1")},
{b, 10, 21, []byte("ctx2")},
{c, 10, 31, []byte("ctx3")},
{a, 10, 41, []byte("ctx4")},
{b, 10, 51, []byte("ctx5")},
{c, 10, 61, []byte("ctx6")},
}
for i, tt := range tests {
for j := 0; j < tt.proposals; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
nt.send(pb.Message{From: tt.sm.id, To: tt.sm.id, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: tt.wctx}}})
r := tt.sm
rs := r.readStates[0]
if rs.Index != tt.wri {
t.Errorf("#%d: readIndex = %d, want %d", i, rs.Index, tt.wri)
}
if !bytes.Equal(rs.RequestCtx, tt.wctx) {
t.Errorf("#%d: requestCtx = %v, want %v", i, rs.RequestCtx, tt.wctx)
}
r.readStates = nil
}
}
// TestReadOnlyForNewLeader ensures that a leader only accepts MsgReadIndex message
// when it commits at least one log entry at it term.
func TestReadOnlyForNewLeader(t *testing.T) {
nodeConfigs := []struct {
id uint64
committed uint64
applied uint64
compact_index uint64
}{
{1, 1, 1, 0},
{2, 2, 2, 2},
{3, 2, 2, 2},
}
peers := make([]stateMachine, 0)
for _, c := range nodeConfigs {
storage := NewMemoryStorage()
storage.Append([]pb.Entry{{Index: 1, Term: 1}, {Index: 2, Term: 1}})
storage.SetHardState(pb.HardState{Term: 1, Commit: c.committed})
if c.compact_index != 0 {
storage.Compact(c.compact_index)
}
cfg := newTestConfig(c.id, []uint64{1, 2, 3}, 10, 1, storage)
cfg.Applied = c.applied
raft := newRaft(cfg)
peers = append(peers, raft)
}
nt := newNetwork(peers...)
// Drop MsgApp to forbid peer a to commit any log entry at its term after it becomes leader.
nt.ignore(pb.MsgApp)
// Force peer a to become leader.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Fatalf("state = %s, want %s", sm.state, StateLeader)
}
// Ensure peer a drops read only request.
var windex uint64 = 4
wctx := []byte("ctx")
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: wctx}}})
if len(sm.readStates) != 0 {
t.Fatalf("len(readStates) = %d, want zero", len(sm.readStates))
}
nt.recover()
// Force peer a to commit a log entry at its term
for i := 0; i < sm.heartbeatTimeout; i++ {
sm.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
if sm.raftLog.committed != 4 {
t.Fatalf("committed = %d, want 4", sm.raftLog.committed)
}
lastLogTerm := sm.raftLog.zeroTermOnErrCompacted(sm.raftLog.term(sm.raftLog.committed))
if lastLogTerm != sm.Term {
t.Fatalf("last log term = %d, want %d", lastLogTerm, sm.Term)
}
// Ensure peer a accepts read only request after it commits a entry at its term.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: wctx}}})
if len(sm.readStates) != 1 {
t.Fatalf("len(readStates) = %d, want 1", len(sm.readStates))
}
rs := sm.readStates[0]
if rs.Index != windex {
t.Fatalf("readIndex = %d, want %d", rs.Index, windex)
}
if !bytes.Equal(rs.RequestCtx, wctx) {
t.Fatalf("requestCtx = %v, want %v", rs.RequestCtx, wctx)
}
}
func TestLeaderAppResp(t *testing.T) {
// initial progress: match = 0; next = 3
tests := []struct {
index uint64
reject bool
// progress
wmatch uint64
wnext uint64
// message
wmsgNum int
windex uint64
wcommitted uint64
}{
{3, true, 0, 3, 0, 0, 0}, // stale resp; no replies
{2, true, 0, 2, 1, 1, 0}, // denied resp; leader does not commit; decrease next and send probing msg
{2, false, 2, 4, 2, 2, 2}, // accept resp; leader commits; broadcast with commit index
{0, false, 0, 3, 0, 0, 0}, // ignore heartbeat replies
}
for i, tt := range tests {
// sm term is 1 after it becomes the leader.
// thus the last log term must be 1 to be committed.
sm := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
sm.raftLog = &raftLog{
storage: &MemoryStorage{ents: []pb.Entry{{}, {Index: 1, Term: 0}, {Index: 2, Term: 1}}},
unstable: unstable{offset: 3},
}
sm.becomeCandidate()
sm.becomeLeader()
sm.readMessages()
sm.Step(pb.Message{From: 2, Type: pb.MsgAppResp, Index: tt.index, Term: sm.Term, Reject: tt.reject, RejectHint: tt.index})
p := sm.prs[2]
if p.Match != tt.wmatch {
t.Errorf("#%d match = %d, want %d", i, p.Match, tt.wmatch)
}
if p.Next != tt.wnext {
t.Errorf("#%d next = %d, want %d", i, p.Next, tt.wnext)
}
msgs := sm.readMessages()
if len(msgs) != tt.wmsgNum {
t.Errorf("#%d msgNum = %d, want %d", i, len(msgs), tt.wmsgNum)
}
for j, msg := range msgs {
if msg.Index != tt.windex {
t.Errorf("#%d.%d index = %d, want %d", i, j, msg.Index, tt.windex)
}
if msg.Commit != tt.wcommitted {
t.Errorf("#%d.%d commit = %d, want %d", i, j, msg.Commit, tt.wcommitted)
}
}
}
}
// When the leader receives a heartbeat tick, it should
// send a MsgApp with m.Index = 0, m.LogTerm=0 and empty entries.
func TestBcastBeat(t *testing.T) {
offset := uint64(1000)
// make a state machine with log.offset = 1000
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: offset,
Term: 1,
ConfState: pb.ConfState{Nodes: []uint64{1, 2, 3}},
},
}
storage := NewMemoryStorage()
storage.ApplySnapshot(s)
sm := newTestRaft(1, nil, 10, 1, storage)
sm.Term = 1
sm.becomeCandidate()
sm.becomeLeader()
for i := 0; i < 10; i++ {
sm.appendEntry(pb.Entry{Index: uint64(i) + 1})
}
// slow follower
sm.prs[2].Match, sm.prs[2].Next = 5, 6
// normal follower
sm.prs[3].Match, sm.prs[3].Next = sm.raftLog.lastIndex(), sm.raftLog.lastIndex()+1
sm.Step(pb.Message{Type: pb.MsgBeat})
msgs := sm.readMessages()
if len(msgs) != 2 {
t.Fatalf("len(msgs) = %v, want 2", len(msgs))
}
wantCommitMap := map[uint64]uint64{
2: min(sm.raftLog.committed, sm.prs[2].Match),
3: min(sm.raftLog.committed, sm.prs[3].Match),
}
for i, m := range msgs {
if m.Type != pb.MsgHeartbeat {
t.Fatalf("#%d: type = %v, want = %v", i, m.Type, pb.MsgHeartbeat)
}
if m.Index != 0 {
t.Fatalf("#%d: prevIndex = %d, want %d", i, m.Index, 0)
}
if m.LogTerm != 0 {
t.Fatalf("#%d: prevTerm = %d, want %d", i, m.LogTerm, 0)
}
if wantCommitMap[m.To] == 0 {
t.Fatalf("#%d: unexpected to %d", i, m.To)
} else {
if m.Commit != wantCommitMap[m.To] {
t.Fatalf("#%d: commit = %d, want %d", i, m.Commit, wantCommitMap[m.To])
}
delete(wantCommitMap, m.To)
}
if len(m.Entries) != 0 {
t.Fatalf("#%d: len(entries) = %d, want 0", i, len(m.Entries))
}
}
}
// tests the output of the state machine when receiving MsgBeat
func TestRecvMsgBeat(t *testing.T) {
tests := []struct {
state StateType
wMsg int
}{
{StateLeader, 2},
// candidate and follower should ignore MsgBeat
{StateCandidate, 0},
{StateFollower, 0},
}
for i, tt := range tests {
sm := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
sm.raftLog = &raftLog{storage: &MemoryStorage{ents: []pb.Entry{{}, {Index: 1, Term: 0}, {Index: 2, Term: 1}}}}
sm.Term = 1
sm.state = tt.state
switch tt.state {
case StateFollower:
sm.step = stepFollower
case StateCandidate:
sm.step = stepCandidate
case StateLeader:
sm.step = stepLeader
}
sm.Step(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
msgs := sm.readMessages()
if len(msgs) != tt.wMsg {
t.Errorf("%d: len(msgs) = %d, want %d", i, len(msgs), tt.wMsg)
}
for _, m := range msgs {
if m.Type != pb.MsgHeartbeat {
t.Errorf("%d: msg.type = %v, want %v", i, m.Type, pb.MsgHeartbeat)
}
}
}
}
func TestLeaderIncreaseNext(t *testing.T) {
previousEnts := []pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}, {Term: 1, Index: 3}}
tests := []struct {
// progress
state ProgressStateType
next uint64
wnext uint64
}{
// state replicate, optimistically increase next
// previous entries + noop entry + propose + 1
{ProgressStateReplicate, 2, uint64(len(previousEnts) + 1 + 1 + 1)},
// state probe, not optimistically increase next
{ProgressStateProbe, 2, 2},
}
for i, tt := range tests {
sm := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
sm.raftLog.append(previousEnts...)
sm.becomeCandidate()
sm.becomeLeader()
sm.prs[2].State = tt.state
sm.prs[2].Next = tt.next
sm.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
p := sm.prs[2]
if p.Next != tt.wnext {
t.Errorf("#%d next = %d, want %d", i, p.Next, tt.wnext)
}
}
}
func TestSendAppendForProgressProbe(t *testing.T) {
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
r.prs[2].becomeProbe()
// each round is a heartbeat
for i := 0; i < 3; i++ {
if i == 0 {
// we expect that raft will only send out one msgAPP on the first
// loop. After that, the follower is paused until a heartbeat response is
// received.
r.appendEntry(pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
msg := r.readMessages()
if len(msg) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msg), 1)
}
if msg[0].Index != 0 {
t.Errorf("index = %d, want %d", msg[0].Index, 0)
}
}
if !r.prs[2].Paused {
t.Errorf("paused = %v, want true", r.prs[2].Paused)
}
for j := 0; j < 10; j++ {
r.appendEntry(pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
if l := len(r.readMessages()); l != 0 {
t.Errorf("len(msg) = %d, want %d", l, 0)
}
}
// do a heartbeat
for j := 0; j < r.heartbeatTimeout; j++ {
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
}
if !r.prs[2].Paused {
t.Errorf("paused = %v, want true", r.prs[2].Paused)
}
// consume the heartbeat
msg := r.readMessages()
if len(msg) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msg), 1)
}
if msg[0].Type != pb.MsgHeartbeat {
t.Errorf("type = %v, want %v", msg[0].Type, pb.MsgHeartbeat)
}
}
// a heartbeat response will allow another message to be sent
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgHeartbeatResp})
msg := r.readMessages()
if len(msg) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msg), 1)
}
if msg[0].Index != 0 {
t.Errorf("index = %d, want %d", msg[0].Index, 0)
}
if !r.prs[2].Paused {
t.Errorf("paused = %v, want true", r.prs[2].Paused)
}
}
func TestSendAppendForProgressReplicate(t *testing.T) {
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
r.prs[2].becomeReplicate()
for i := 0; i < 10; i++ {
r.appendEntry(pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
msgs := r.readMessages()
if len(msgs) != 1 {
t.Errorf("len(msg) = %d, want %d", len(msgs), 1)
}
}
}
func TestSendAppendForProgressSnapshot(t *testing.T) {
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
r.prs[2].becomeSnapshot(10)
for i := 0; i < 10; i++ {
r.appendEntry(pb.Entry{Data: []byte("somedata")})
r.sendAppend(2)
msgs := r.readMessages()
if len(msgs) != 0 {
t.Errorf("len(msg) = %d, want %d", len(msgs), 0)
}
}
}
func TestRecvMsgUnreachable(t *testing.T) {
previousEnts := []pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}, {Term: 1, Index: 3}}
s := NewMemoryStorage()
s.Append(previousEnts)
r := newTestRaft(1, []uint64{1, 2}, 10, 1, s)
r.becomeCandidate()
r.becomeLeader()
r.readMessages()
// set node 2 to state replicate
r.prs[2].Match = 3
r.prs[2].becomeReplicate()
r.prs[2].optimisticUpdate(5)
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgUnreachable})
if r.prs[2].State != ProgressStateProbe {
t.Errorf("state = %s, want %s", r.prs[2].State, ProgressStateProbe)
}
if wnext := r.prs[2].Match + 1; r.prs[2].Next != wnext {
t.Errorf("next = %d, want %d", r.prs[2].Next, wnext)
}
}
func TestRestore(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2, 3}},
},
}
storage := NewMemoryStorage()
sm := newTestRaft(1, []uint64{1, 2}, 10, 1, storage)
if ok := sm.restore(s); !ok {
t.Fatal("restore fail, want succeed")
}
if sm.raftLog.lastIndex() != s.Metadata.Index {
t.Errorf("log.lastIndex = %d, want %d", sm.raftLog.lastIndex(), s.Metadata.Index)
}
if mustTerm(sm.raftLog.term(s.Metadata.Index)) != s.Metadata.Term {
t.Errorf("log.lastTerm = %d, want %d", mustTerm(sm.raftLog.term(s.Metadata.Index)), s.Metadata.Term)
}
sg := sm.nodes()
if !reflect.DeepEqual(sg, s.Metadata.ConfState.Nodes) {
t.Errorf("sm.Nodes = %+v, want %+v", sg, s.Metadata.ConfState.Nodes)
}
if ok := sm.restore(s); ok {
t.Fatal("restore succeed, want fail")
}
}
// TestRestoreWithLearner restores a snapshot which contains learners.
func TestRestoreWithLearner(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2}, Learners: []uint64{3}},
},
}
storage := NewMemoryStorage()
sm := newTestLearnerRaft(3, []uint64{1, 2}, []uint64{3}, 10, 1, storage)
if ok := sm.restore(s); !ok {
t.Error("restore fail, want succeed")
}
if sm.raftLog.lastIndex() != s.Metadata.Index {
t.Errorf("log.lastIndex = %d, want %d", sm.raftLog.lastIndex(), s.Metadata.Index)
}
if mustTerm(sm.raftLog.term(s.Metadata.Index)) != s.Metadata.Term {
t.Errorf("log.lastTerm = %d, want %d", mustTerm(sm.raftLog.term(s.Metadata.Index)), s.Metadata.Term)
}
sg := sm.nodes()
if len(sg) != len(s.Metadata.ConfState.Nodes)+len(s.Metadata.ConfState.Learners) {
t.Errorf("sm.Nodes = %+v, length not equal with %+v", sg, s.Metadata.ConfState)
}
for _, n := range s.Metadata.ConfState.Nodes {
if sm.prs[n].IsLearner {
t.Errorf("sm.Node %x isLearner = %s, want %t", n, sm.prs[n], false)
}
}
for _, n := range s.Metadata.ConfState.Learners {
if !sm.learnerPrs[n].IsLearner {
t.Errorf("sm.Node %x isLearner = %s, want %t", n, sm.prs[n], true)
}
}
if ok := sm.restore(s); ok {
t.Error("restore succeed, want fail")
}
}
// TestRestoreInvalidLearner verfies that a normal peer can't become learner again
// when restores snapshot.
func TestRestoreInvalidLearner(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2}, Learners: []uint64{3}},
},
}
storage := NewMemoryStorage()
sm := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, storage)
if sm.isLearner {
t.Errorf("%x is learner, want not", sm.id)
}
if ok := sm.restore(s); ok {
t.Error("restore succeed, want fail")
}
}
// TestRestoreLearnerPromotion checks that a learner can become to a follower after
// restoring snapshot.
func TestRestoreLearnerPromotion(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2, 3}},
},
}
storage := NewMemoryStorage()
sm := newTestLearnerRaft(3, []uint64{1, 2}, []uint64{3}, 10, 1, storage)
if !sm.isLearner {
t.Errorf("%x is not learner, want yes", sm.id)
}
if ok := sm.restore(s); !ok {
t.Error("restore fail, want succeed")
}
if sm.isLearner {
t.Errorf("%x is learner, want not", sm.id)
}
}
// TestLearnerReceiveSnapshot tests that a learner can receive a snpahost from leader
func TestLearnerReceiveSnapshot(t *testing.T) {
// restore the state machine from a snapshot so it has a compacted log and a snapshot
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1}, Learners: []uint64{2}},
},
}
n1 := newTestLearnerRaft(1, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n2 := newTestLearnerRaft(2, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
n1.restore(s)
// Force set n1 appplied index.
n1.raftLog.appliedTo(n1.raftLog.committed)
nt := newNetwork(n1, n2)
setRandomizedElectionTimeout(n1, n1.electionTimeout)
for i := 0; i < n1.electionTimeout; i++ {
n1.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
if n2.raftLog.committed != n1.raftLog.committed {
t.Errorf("peer 2 must commit to %d, but %d", n1.raftLog.committed, n2.raftLog.committed)
}
}
func TestRestoreIgnoreSnapshot(t *testing.T) {
previousEnts := []pb.Entry{{Term: 1, Index: 1}, {Term: 1, Index: 2}, {Term: 1, Index: 3}}
commit := uint64(1)
storage := NewMemoryStorage()
sm := newTestRaft(1, []uint64{1, 2}, 10, 1, storage)
sm.raftLog.append(previousEnts...)
sm.raftLog.commitTo(commit)
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: commit,
Term: 1,
ConfState: pb.ConfState{Nodes: []uint64{1, 2}},
},
}
// ignore snapshot
if ok := sm.restore(s); ok {
t.Errorf("restore = %t, want %t", ok, false)
}
if sm.raftLog.committed != commit {
t.Errorf("commit = %d, want %d", sm.raftLog.committed, commit)
}
// ignore snapshot and fast forward commit
s.Metadata.Index = commit + 1
if ok := sm.restore(s); ok {
t.Errorf("restore = %t, want %t", ok, false)
}
if sm.raftLog.committed != commit+1 {
t.Errorf("commit = %d, want %d", sm.raftLog.committed, commit+1)
}
}
func TestProvideSnap(t *testing.T) {
// restore the state machine from a snapshot so it has a compacted log and a snapshot
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2}},
},
}
storage := NewMemoryStorage()
sm := newTestRaft(1, []uint64{1}, 10, 1, storage)
sm.restore(s)
sm.becomeCandidate()
sm.becomeLeader()
// force set the next of node 2, so that node 2 needs a snapshot
sm.prs[2].Next = sm.raftLog.firstIndex()
sm.Step(pb.Message{From: 2, To: 1, Type: pb.MsgAppResp, Index: sm.prs[2].Next - 1, Reject: true})
msgs := sm.readMessages()
if len(msgs) != 1 {
t.Fatalf("len(msgs) = %d, want 1", len(msgs))
}
m := msgs[0]
if m.Type != pb.MsgSnap {
t.Errorf("m.Type = %v, want %v", m.Type, pb.MsgSnap)
}
}
func TestIgnoreProvidingSnap(t *testing.T) {
// restore the state machine from a snapshot so it has a compacted log and a snapshot
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2}},
},
}
storage := NewMemoryStorage()
sm := newTestRaft(1, []uint64{1}, 10, 1, storage)
sm.restore(s)
sm.becomeCandidate()
sm.becomeLeader()
// force set the next of node 2, so that node 2 needs a snapshot
// change node 2 to be inactive, expect node 1 ignore sending snapshot to 2
sm.prs[2].Next = sm.raftLog.firstIndex() - 1
sm.prs[2].RecentActive = false
sm.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Data: []byte("somedata")}}})
msgs := sm.readMessages()
if len(msgs) != 0 {
t.Errorf("len(msgs) = %d, want 0", len(msgs))
}
}
func TestRestoreFromSnapMsg(t *testing.T) {
s := pb.Snapshot{
Metadata: pb.SnapshotMetadata{
Index: 11, // magic number
Term: 11, // magic number
ConfState: pb.ConfState{Nodes: []uint64{1, 2}},
},
}
m := pb.Message{Type: pb.MsgSnap, From: 1, Term: 2, Snapshot: s}
sm := newTestRaft(2, []uint64{1, 2}, 10, 1, NewMemoryStorage())
sm.Step(m)
if sm.lead != uint64(1) {
t.Errorf("sm.lead = %d, want 1", sm.lead)
}
// TODO(bdarnell): what should this test?
}
func TestSlowNodeRestore(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
for j := 0; j <= 100; j++ {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
}
lead := nt.peers[1].(*raft)
nextEnts(lead, nt.storage[1])
nt.storage[1].CreateSnapshot(lead.raftLog.applied, &pb.ConfState{Nodes: lead.nodes()}, nil)
nt.storage[1].Compact(lead.raftLog.applied)
nt.recover()
// send heartbeats so that the leader can learn everyone is active.
// node 3 will only be considered as active when node 1 receives a reply from it.
for {
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgBeat})
if lead.prs[3].RecentActive {
break
}
}
// trigger a snapshot
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
follower := nt.peers[3].(*raft)
// trigger a commit
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
if follower.raftLog.committed != lead.raftLog.committed {
t.Errorf("follower.committed = %d, want %d", follower.raftLog.committed, lead.raftLog.committed)
}
}
// TestStepConfig tests that when raft step msgProp in EntryConfChange type,
// it appends the entry to log and sets pendingConf to be true.
func TestStepConfig(t *testing.T) {
// a raft that cannot make progress
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
index := r.raftLog.lastIndex()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange}}})
if g := r.raftLog.lastIndex(); g != index+1 {
t.Errorf("index = %d, want %d", g, index+1)
}
if !r.pendingConf {
t.Errorf("pendingConf = %v, want true", r.pendingConf)
}
}
// TestStepIgnoreConfig tests that if raft step the second msgProp in
// EntryConfChange type when the first one is uncommitted, the node will set
// the proposal to noop and keep its original state.
func TestStepIgnoreConfig(t *testing.T) {
// a raft that cannot make progress
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.becomeCandidate()
r.becomeLeader()
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange}}})
index := r.raftLog.lastIndex()
pendingConf := r.pendingConf
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange}}})
wents := []pb.Entry{{Type: pb.EntryNormal, Term: 1, Index: 3, Data: nil}}
ents, err := r.raftLog.entries(index+1, noLimit)
if err != nil {
t.Fatalf("unexpected error %v", err)
}
if !reflect.DeepEqual(ents, wents) {
t.Errorf("ents = %+v, want %+v", ents, wents)
}
if r.pendingConf != pendingConf {
t.Errorf("pendingConf = %v, want %v", r.pendingConf, pendingConf)
}
}
// TestRecoverPendingConfig tests that new leader recovers its pendingConf flag
// based on uncommitted entries.
func TestRecoverPendingConfig(t *testing.T) {
tests := []struct {
entType pb.EntryType
wpending bool
}{
{pb.EntryNormal, false},
{pb.EntryConfChange, true},
}
for i, tt := range tests {
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.appendEntry(pb.Entry{Type: tt.entType})
r.becomeCandidate()
r.becomeLeader()
if r.pendingConf != tt.wpending {
t.Errorf("#%d: pendingConf = %v, want %v", i, r.pendingConf, tt.wpending)
}
}
}
// TestRecoverDoublePendingConfig tests that new leader will panic if
// there exist two uncommitted config entries.
func TestRecoverDoublePendingConfig(t *testing.T) {
func() {
defer func() {
if err := recover(); err == nil {
t.Errorf("expect panic, but nothing happens")
}
}()
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.appendEntry(pb.Entry{Type: pb.EntryConfChange})
r.appendEntry(pb.Entry{Type: pb.EntryConfChange})
r.becomeCandidate()
r.becomeLeader()
}()
}
// TestAddNode tests that addNode could update pendingConf and nodes correctly.
func TestAddNode(t *testing.T) {
r := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
r.pendingConf = true
r.addNode(2)
if r.pendingConf {
t.Errorf("pendingConf = %v, want false", r.pendingConf)
}
nodes := r.nodes()
wnodes := []uint64{1, 2}
if !reflect.DeepEqual(nodes, wnodes) {
t.Errorf("nodes = %v, want %v", nodes, wnodes)
}
}
// TestAddLearner tests that addLearner could update pendingConf and nodes correctly.
func TestAddLearner(t *testing.T) {
r := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
r.pendingConf = true
r.addLearner(2)
if r.pendingConf {
t.Errorf("pendingConf = %v, want false", r.pendingConf)
}
nodes := r.nodes()
wnodes := []uint64{1, 2}
if !reflect.DeepEqual(nodes, wnodes) {
t.Errorf("nodes = %v, want %v", nodes, wnodes)
}
if !r.learnerPrs[2].IsLearner {
t.Errorf("node 2 is learner %t, want %t", r.prs[2].IsLearner, true)
}
}
// TestAddNodeCheckQuorum tests that addNode does not trigger a leader election
// immediately when checkQuorum is set.
func TestAddNodeCheckQuorum(t *testing.T) {
r := newTestRaft(1, []uint64{1}, 10, 1, NewMemoryStorage())
r.pendingConf = true
r.checkQuorum = true
r.becomeCandidate()
r.becomeLeader()
for i := 0; i < r.electionTimeout-1; i++ {
r.tick()
}
r.addNode(2)
// This tick will reach electionTimeout, which triggers a quorum check.
r.tick()
// Node 1 should still be the leader after a single tick.
if r.state != StateLeader {
t.Errorf("state = %v, want %v", r.state, StateLeader)
}
// After another electionTimeout ticks without hearing from node 2,
// node 1 should step down.
for i := 0; i < r.electionTimeout; i++ {
r.tick()
}
if r.state != StateFollower {
t.Errorf("state = %v, want %v", r.state, StateFollower)
}
}
// TestRemoveNode tests that removeNode could update pendingConf, nodes and
// and removed list correctly.
func TestRemoveNode(t *testing.T) {
r := newTestRaft(1, []uint64{1, 2}, 10, 1, NewMemoryStorage())
r.pendingConf = true
r.removeNode(2)
if r.pendingConf {
t.Errorf("pendingConf = %v, want false", r.pendingConf)
}
w := []uint64{1}
if g := r.nodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
// remove all nodes from cluster
r.removeNode(1)
w = []uint64{}
if g := r.nodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
}
// TestRemoveLearner tests that removeNode could update pendingConf, nodes and
// and removed list correctly.
func TestRemoveLearner(t *testing.T) {
r := newTestLearnerRaft(1, []uint64{1}, []uint64{2}, 10, 1, NewMemoryStorage())
r.pendingConf = true
r.removeNode(2)
if r.pendingConf {
t.Errorf("pendingConf = %v, want false", r.pendingConf)
}
w := []uint64{1}
if g := r.nodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
// remove all nodes from cluster
r.removeNode(1)
w = []uint64{}
if g := r.nodes(); !reflect.DeepEqual(g, w) {
t.Errorf("nodes = %v, want %v", g, w)
}
}
func TestPromotable(t *testing.T) {
id := uint64(1)
tests := []struct {
peers []uint64
wp bool
}{
{[]uint64{1}, true},
{[]uint64{1, 2, 3}, true},
{[]uint64{}, false},
{[]uint64{2, 3}, false},
}
for i, tt := range tests {
r := newTestRaft(id, tt.peers, 5, 1, NewMemoryStorage())
if g := r.promotable(); g != tt.wp {
t.Errorf("#%d: promotable = %v, want %v", i, g, tt.wp)
}
}
}
func TestRaftNodes(t *testing.T) {
tests := []struct {
ids []uint64
wids []uint64
}{
{
[]uint64{1, 2, 3},
[]uint64{1, 2, 3},
},
{
[]uint64{3, 2, 1},
[]uint64{1, 2, 3},
},
}
for i, tt := range tests {
r := newTestRaft(1, tt.ids, 10, 1, NewMemoryStorage())
if !reflect.DeepEqual(r.nodes(), tt.wids) {
t.Errorf("#%d: nodes = %+v, want %+v", i, r.nodes(), tt.wids)
}
}
}
func TestCampaignWhileLeader(t *testing.T) {
testCampaignWhileLeader(t, false)
}
func TestPreCampaignWhileLeader(t *testing.T) {
testCampaignWhileLeader(t, true)
}
func testCampaignWhileLeader(t *testing.T, preVote bool) {
cfg := newTestConfig(1, []uint64{1}, 5, 1, NewMemoryStorage())
cfg.PreVote = preVote
r := newRaft(cfg)
if r.state != StateFollower {
t.Errorf("expected new node to be follower but got %s", r.state)
}
// We don't call campaign() directly because it comes after the check
// for our current state.
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if r.state != StateLeader {
t.Errorf("expected single-node election to become leader but got %s", r.state)
}
term := r.Term
r.Step(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
if r.state != StateLeader {
t.Errorf("expected to remain leader but got %s", r.state)
}
if r.Term != term {
t.Errorf("expected to remain in term %v but got %v", term, r.Term)
}
}
// TestCommitAfterRemoveNode verifies that pending commands can become
// committed when a config change reduces the quorum requirements.
func TestCommitAfterRemoveNode(t *testing.T) {
// Create a cluster with two nodes.
s := NewMemoryStorage()
r := newTestRaft(1, []uint64{1, 2}, 5, 1, s)
r.becomeCandidate()
r.becomeLeader()
// Begin to remove the second node.
cc := pb.ConfChange{
Type: pb.ConfChangeRemoveNode,
NodeID: 2,
}
ccData, err := cc.Marshal()
if err != nil {
t.Fatal(err)
}
r.Step(pb.Message{
Type: pb.MsgProp,
Entries: []pb.Entry{
{Type: pb.EntryConfChange, Data: ccData},
},
})
// Stabilize the log and make sure nothing is committed yet.
if ents := nextEnts(r, s); len(ents) > 0 {
t.Fatalf("unexpected committed entries: %v", ents)
}
ccIndex := r.raftLog.lastIndex()
// While the config change is pending, make another proposal.
r.Step(pb.Message{
Type: pb.MsgProp,
Entries: []pb.Entry{
{Type: pb.EntryNormal, Data: []byte("hello")},
},
})
// Node 2 acknowledges the config change, committing it.
r.Step(pb.Message{
Type: pb.MsgAppResp,
From: 2,
Index: ccIndex,
})
ents := nextEnts(r, s)
if len(ents) != 2 {
t.Fatalf("expected two committed entries, got %v", ents)
}
if ents[0].Type != pb.EntryNormal || ents[0].Data != nil {
t.Fatalf("expected ents[0] to be empty, but got %v", ents[0])
}
if ents[1].Type != pb.EntryConfChange {
t.Fatalf("expected ents[1] to be EntryConfChange, got %v", ents[1])
}
// Apply the config change. This reduces quorum requirements so the
// pending command can now commit.
r.removeNode(2)
ents = nextEnts(r, s)
if len(ents) != 1 || ents[0].Type != pb.EntryNormal ||
string(ents[0].Data) != "hello" {
t.Fatalf("expected one committed EntryNormal, got %v", ents)
}
}
// TestLeaderTransferToUpToDateNode verifies transferring should succeed
// if the transferee has the most up-to-date log entries when transfer starts.
func TestLeaderTransferToUpToDateNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
if lead.lead != 1 {
t.Fatalf("after election leader is %x, want 1", lead.lead)
}
// Transfer leadership to 2.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
// After some log replication, transfer leadership back to 1.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.send(pb.Message{From: 1, To: 2, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferToUpToDateNodeFromFollower verifies transferring should succeed
// if the transferee has the most up-to-date log entries when transfer starts.
// Not like TestLeaderTransferToUpToDateNode, where the leader transfer message
// is sent to the leader, in this test case every leader transfer message is sent
// to the follower.
func TestLeaderTransferToUpToDateNodeFromFollower(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
if lead.lead != 1 {
t.Fatalf("after election leader is %x, want 1", lead.lead)
}
// Transfer leadership to 2.
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
// After some log replication, transfer leadership back to 1.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferWithCheckQuorum ensures transferring leader still works
// even the current leader is still under its leader lease
func TestLeaderTransferWithCheckQuorum(t *testing.T) {
nt := newNetwork(nil, nil, nil)
for i := 1; i < 4; i++ {
r := nt.peers[uint64(i)].(*raft)
r.checkQuorum = true
setRandomizedElectionTimeout(r, r.electionTimeout+i)
}
// Letting peer 2 electionElapsed reach to timeout so that it can vote for peer 1
f := nt.peers[2].(*raft)
for i := 0; i < f.electionTimeout; i++ {
f.tick()
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
if lead.lead != 1 {
t.Fatalf("after election leader is %x, want 1", lead.lead)
}
// Transfer leadership to 2.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
// After some log replication, transfer leadership back to 1.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.send(pb.Message{From: 1, To: 2, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferToSlowFollower(t *testing.T) {
defaultLogger.EnableDebug()
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
nt.recover()
lead := nt.peers[1].(*raft)
if lead.prs[3].Match != 1 {
t.Fatalf("node 1 has match %x for node 3, want %x", lead.prs[3].Match, 1)
}
// Transfer leadership to 3 when node 3 is lack of log.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 3)
}
func TestLeaderTransferAfterSnapshot(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
lead := nt.peers[1].(*raft)
nextEnts(lead, nt.storage[1])
nt.storage[1].CreateSnapshot(lead.raftLog.applied, &pb.ConfState{Nodes: lead.nodes()}, nil)
nt.storage[1].Compact(lead.raftLog.applied)
nt.recover()
if lead.prs[3].Match != 1 {
t.Fatalf("node 1 has match %x for node 3, want %x", lead.prs[3].Match, 1)
}
// Transfer leadership to 3 when node 3 is lack of snapshot.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
// Send pb.MsgHeartbeatResp to leader to trigger a snapshot for node 3.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgHeartbeatResp})
checkLeaderTransferState(t, lead, StateFollower, 3)
}
func TestLeaderTransferToSelf(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
// Transfer leadership to self, there will be noop.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferToNonExistingNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
lead := nt.peers[1].(*raft)
// Transfer leadership to non-existing node, there will be noop.
nt.send(pb.Message{From: 4, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferTimeout(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
// Transfer leadership to isolated node, wait for timeout.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
for i := 0; i < lead.heartbeatTimeout; i++ {
lead.tick()
}
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
for i := 0; i < lead.electionTimeout-lead.heartbeatTimeout; i++ {
lead.tick()
}
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func TestLeaderTransferIgnoreProposal(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
// Transfer leadership to isolated node to let transfer pending, then send proposal.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgProp, Entries: []pb.Entry{{}}})
if lead.prs[1].Match != 1 {
t.Fatalf("node 1 has match %x, want %x", lead.prs[1].Match, 1)
}
}
func TestLeaderTransferReceiveHigherTermVote(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
// Transfer leadership to isolated node to let transfer pending.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup, Index: 1, Term: 2})
checkLeaderTransferState(t, lead, StateFollower, 2)
}
func TestLeaderTransferRemoveNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.ignore(pb.MsgTimeoutNow)
lead := nt.peers[1].(*raft)
// The leadTransferee is removed when leadship transferring.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
lead.removeNode(3)
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferBack verifies leadership can transfer back to self when last transfer is pending.
func TestLeaderTransferBack(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
// Transfer leadership back to self.
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateLeader, 1)
}
// TestLeaderTransferSecondTransferToAnotherNode verifies leader can transfer to another node
// when last transfer is pending.
func TestLeaderTransferSecondTransferToAnotherNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
// Transfer leadership to another node.
nt.send(pb.Message{From: 2, To: 1, Type: pb.MsgTransferLeader})
checkLeaderTransferState(t, lead, StateFollower, 2)
}
// TestLeaderTransferSecondTransferToSameNode verifies second transfer leader request
// to the same node should not extend the timeout while the first one is pending.
func TestLeaderTransferSecondTransferToSameNode(t *testing.T) {
nt := newNetwork(nil, nil, nil)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
nt.isolate(3)
lead := nt.peers[1].(*raft)
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
if lead.leadTransferee != 3 {
t.Fatalf("wait transferring, leadTransferee = %v, want %v", lead.leadTransferee, 3)
}
for i := 0; i < lead.heartbeatTimeout; i++ {
lead.tick()
}
// Second transfer leadership request to the same node.
nt.send(pb.Message{From: 3, To: 1, Type: pb.MsgTransferLeader})
for i := 0; i < lead.electionTimeout-lead.heartbeatTimeout; i++ {
lead.tick()
}
checkLeaderTransferState(t, lead, StateLeader, 1)
}
func checkLeaderTransferState(t *testing.T, r *raft, state StateType, lead uint64) {
if r.state != state || r.lead != lead {
t.Fatalf("after transferring, node has state %v lead %v, want state %v lead %v", r.state, r.lead, state, lead)
}
if r.leadTransferee != None {
t.Fatalf("after transferring, node has leadTransferee %v, want leadTransferee %v", r.leadTransferee, None)
}
}
// TestTransferNonMember verifies that when a MsgTimeoutNow arrives at
// a node that has been removed from the group, nothing happens.
// (previously, if the node also got votes, it would panic as it
// transitioned to StateLeader)
func TestTransferNonMember(t *testing.T) {
r := newTestRaft(1, []uint64{2, 3, 4}, 5, 1, NewMemoryStorage())
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgTimeoutNow})
r.Step(pb.Message{From: 2, To: 1, Type: pb.MsgVoteResp})
r.Step(pb.Message{From: 3, To: 1, Type: pb.MsgVoteResp})
if r.state != StateFollower {
t.Fatalf("state is %s, want StateFollower", r.state)
}
}
// TestNodeWithSmallerTermCanCompleteElection tests the scenario where a node
// that has been partitioned away (and fallen behind) rejoins the cluster at
// about the same time the leader node gets partitioned away.
// Previously the cluster would come to a standstill when run with PreVote
// enabled.
func TestNodeWithSmallerTermCanCompleteElection(t *testing.T) {
n1 := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
n2 := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
n3 := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
n1.preVote = true
n2.preVote = true
n3.preVote = true
// cause a network partition to isolate node 3
nt := newNetwork(n1, n2, n3)
nt.cut(1, 3)
nt.cut(2, 3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
sm := nt.peers[1].(*raft)
if sm.state != StateLeader {
t.Errorf("peer 1 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[2].(*raft)
if sm.state != StateFollower {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateFollower)
}
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
sm = nt.peers[3].(*raft)
if sm.state != StatePreCandidate {
t.Errorf("peer 3 state: %s, want %s", sm.state, StatePreCandidate)
}
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// check whether the term values are expected
// a.Term == 3
// b.Term == 3
// c.Term == 1
sm = nt.peers[1].(*raft)
if sm.Term != 3 {
t.Errorf("peer 1 term: %d, want %d", sm.Term, 3)
}
sm = nt.peers[2].(*raft)
if sm.Term != 3 {
t.Errorf("peer 2 term: %d, want %d", sm.Term, 3)
}
sm = nt.peers[3].(*raft)
if sm.Term != 1 {
t.Errorf("peer 3 term: %d, want %d", sm.Term, 1)
}
// check state
// a == follower
// b == leader
// c == pre-candidate
sm = nt.peers[1].(*raft)
if sm.state != StateFollower {
t.Errorf("peer 1 state: %s, want %s", sm.state, StateFollower)
}
sm = nt.peers[2].(*raft)
if sm.state != StateLeader {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[3].(*raft)
if sm.state != StatePreCandidate {
t.Errorf("peer 3 state: %s, want %s", sm.state, StatePreCandidate)
}
sm.logger.Infof("going to bring back peer 3 and kill peer 2")
// recover the network then immediately isolate b which is currently
// the leader, this is to emulate the crash of b.
nt.recover()
nt.cut(2, 1)
nt.cut(2, 3)
// call for election
nt.send(pb.Message{From: 3, To: 3, Type: pb.MsgHup})
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// do we have a leader?
sma := nt.peers[1].(*raft)
smb := nt.peers[3].(*raft)
if sma.state != StateLeader && smb.state != StateLeader {
t.Errorf("no leader")
}
}
// TestPreVoteWithSplitVote verifies that after split vote, cluster can complete
// election in next round.
func TestPreVoteWithSplitVote(t *testing.T) {
n1 := newTestRaft(1, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
n2 := newTestRaft(2, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
n3 := newTestRaft(3, []uint64{1, 2, 3}, 10, 1, NewMemoryStorage())
n1.becomeFollower(1, None)
n2.becomeFollower(1, None)
n3.becomeFollower(1, None)
n1.preVote = true
n2.preVote = true
n3.preVote = true
nt := newNetwork(n1, n2, n3)
nt.send(pb.Message{From: 1, To: 1, Type: pb.MsgHup})
// simulate leader down. followers start split vote.
nt.isolate(1)
nt.send([]pb.Message{
{From: 2, To: 2, Type: pb.MsgHup},
{From: 3, To: 3, Type: pb.MsgHup},
}...)
// check whether the term values are expected
// n2.Term == 3
// n3.Term == 3
sm := nt.peers[2].(*raft)
if sm.Term != 3 {
t.Errorf("peer 2 term: %d, want %d", sm.Term, 3)
}
sm = nt.peers[3].(*raft)
if sm.Term != 3 {
t.Errorf("peer 3 term: %d, want %d", sm.Term, 3)
}
// check state
// n2 == candidate
// n3 == candidate
sm = nt.peers[2].(*raft)
if sm.state != StateCandidate {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateCandidate)
}
sm = nt.peers[3].(*raft)
if sm.state != StateCandidate {
t.Errorf("peer 3 state: %s, want %s", sm.state, StateCandidate)
}
// node 2 election timeout first
nt.send(pb.Message{From: 2, To: 2, Type: pb.MsgHup})
// check whether the term values are expected
// n2.Term == 4
// n3.Term == 4
sm = nt.peers[2].(*raft)
if sm.Term != 4 {
t.Errorf("peer 2 term: %d, want %d", sm.Term, 4)
}
sm = nt.peers[3].(*raft)
if sm.Term != 4 {
t.Errorf("peer 3 term: %d, want %d", sm.Term, 4)
}
// check state
// n2 == leader
// n3 == follower
sm = nt.peers[2].(*raft)
if sm.state != StateLeader {
t.Errorf("peer 2 state: %s, want %s", sm.state, StateLeader)
}
sm = nt.peers[3].(*raft)
if sm.state != StateFollower {
t.Errorf("peer 3 state: %s, want %s", sm.state, StateFollower)
}
}
func entsWithConfig(configFunc func(*Config), terms ...uint64) *raft {
storage := NewMemoryStorage()
for i, term := range terms {
storage.Append([]pb.Entry{{Index: uint64(i + 1), Term: term}})
}
cfg := newTestConfig(1, []uint64{}, 5, 1, storage)
if configFunc != nil {
configFunc(cfg)
}
sm := newRaft(cfg)
sm.reset(terms[len(terms)-1])
return sm
}
// votedWithConfig creates a raft state machine with Vote and Term set
// to the given value but no log entries (indicating that it voted in
// the given term but has not received any logs).
func votedWithConfig(configFunc func(*Config), vote, term uint64) *raft {
storage := NewMemoryStorage()
storage.SetHardState(pb.HardState{Vote: vote, Term: term})
cfg := newTestConfig(1, []uint64{}, 5, 1, storage)
if configFunc != nil {
configFunc(cfg)
}
sm := newRaft(cfg)
sm.reset(term)
return sm
}
type network struct {
peers map[uint64]stateMachine
storage map[uint64]*MemoryStorage
dropm map[connem]float64
ignorem map[pb.MessageType]bool
}
// newNetwork initializes a network from peers.
// A nil node will be replaced with a new *stateMachine.
// A *stateMachine will get its k, id.
// When using stateMachine, the address list is always [1, n].
func newNetwork(peers ...stateMachine) *network {
return newNetworkWithConfig(nil, peers...)
}
// newNetworkWithConfig is like newNetwork but calls the given func to
// modify the configuration of any state machines it creates.
func newNetworkWithConfig(configFunc func(*Config), peers ...stateMachine) *network {
size := len(peers)
peerAddrs := idsBySize(size)
npeers := make(map[uint64]stateMachine, size)
nstorage := make(map[uint64]*MemoryStorage, size)
for j, p := range peers {
id := peerAddrs[j]
switch v := p.(type) {
case nil:
nstorage[id] = NewMemoryStorage()
cfg := newTestConfig(id, peerAddrs, 10, 1, nstorage[id])
if configFunc != nil {
configFunc(cfg)
}
sm := newRaft(cfg)
npeers[id] = sm
case *raft:
learners := make(map[uint64]bool, len(v.learnerPrs))
for i := range v.learnerPrs {
learners[i] = true
}
v.id = id
v.prs = make(map[uint64]*Progress)
v.learnerPrs = make(map[uint64]*Progress)
for i := 0; i < size; i++ {
if _, ok := learners[peerAddrs[i]]; ok {
v.learnerPrs[peerAddrs[i]] = &Progress{IsLearner: true}
} else {
v.prs[peerAddrs[i]] = &Progress{}
}
}
v.reset(v.Term)
npeers[id] = v
case *blackHole:
npeers[id] = v
default:
panic(fmt.Sprintf("unexpected state machine type: %T", p))
}
}
return &network{
peers: npeers,
storage: nstorage,
dropm: make(map[connem]float64),
ignorem: make(map[pb.MessageType]bool),
}
}
func preVoteConfig(c *Config) {
c.PreVote = true
}
func (nw *network) send(msgs ...pb.Message) {
for len(msgs) > 0 {
m := msgs[0]
p := nw.peers[m.To]
p.Step(m)
msgs = append(msgs[1:], nw.filter(p.readMessages())...)
}
}
func (nw *network) drop(from, to uint64, perc float64) {
nw.dropm[connem{from, to}] = perc
}
func (nw *network) cut(one, other uint64) {
nw.drop(one, other, 1)
nw.drop(other, one, 1)
}
func (nw *network) isolate(id uint64) {
for i := 0; i < len(nw.peers); i++ {
nid := uint64(i) + 1
if nid != id {
nw.drop(id, nid, 1.0)
nw.drop(nid, id, 1.0)
}
}
}
func (nw *network) ignore(t pb.MessageType) {
nw.ignorem[t] = true
}
func (nw *network) recover() {
nw.dropm = make(map[connem]float64)
nw.ignorem = make(map[pb.MessageType]bool)
}
func (nw *network) filter(msgs []pb.Message) []pb.Message {
mm := []pb.Message{}
for _, m := range msgs {
if nw.ignorem[m.Type] {
continue
}
switch m.Type {
case pb.MsgHup:
// hups never go over the network, so don't drop them but panic
panic("unexpected msgHup")
default:
perc := nw.dropm[connem{m.From, m.To}]
if n := rand.Float64(); n < perc {
continue
}
}
mm = append(mm, m)
}
return mm
}
type connem struct {
from, to uint64
}
type blackHole struct{}
func (blackHole) Step(pb.Message) error { return nil }
func (blackHole) readMessages() []pb.Message { return nil }
var nopStepper = &blackHole{}
func idsBySize(size int) []uint64 {
ids := make([]uint64, size)
for i := 0; i < size; i++ {
ids[i] = 1 + uint64(i)
}
return ids
}
// setRandomizedElectionTimeout set up the value by caller instead of choosing
// by system, in some test scenario we need to fill in some expected value to
// ensure the certainty
func setRandomizedElectionTimeout(r *raft, v int) {
r.randomizedElectionTimeout = v
}
func newTestConfig(id uint64, peers []uint64, election, heartbeat int, storage Storage) *Config {
return &Config{
ID: id,
peers: peers,
ElectionTick: election,
HeartbeatTick: heartbeat,
Storage: storage,
MaxSizePerMsg: noLimit,
MaxInflightMsgs: 256,
}
}
func newTestRaft(id uint64, peers []uint64, election, heartbeat int, storage Storage) *raft {
return newRaft(newTestConfig(id, peers, election, heartbeat, storage))
}
func newTestLearnerRaft(id uint64, peers []uint64, learners []uint64, election, heartbeat int, storage Storage) *raft {
cfg := newTestConfig(id, peers, election, heartbeat, storage)
cfg.learners = learners
return newRaft(cfg)
}