blob: 231fa3deda49d80b311775777cf482a3640d593d [file] [log] [blame]
// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package simple
import (
"fmt"
"golang.org/x/tools/container/intsets"
"k8s.io/kubernetes/third_party/forked/gonum/graph"
)
// UndirectedGraph implements a generalized undirected graph.
type UndirectedGraph struct {
nodes map[int]graph.Node
edges map[int]edgeHolder
self, absent float64
freeIDs intsets.Sparse
usedIDs intsets.Sparse
}
// NewUndirectedGraph returns an UndirectedGraph with the specified self and absent
// edge weight values.
func NewUndirectedGraph(self, absent float64) *UndirectedGraph {
return &UndirectedGraph{
nodes: make(map[int]graph.Node),
edges: make(map[int]edgeHolder),
self: self,
absent: absent,
}
}
// NewNodeID returns a new unique ID for a node to be added to g. The returned ID does
// not become a valid ID in g until it is added to g.
func (g *UndirectedGraph) NewNodeID() int {
if len(g.nodes) == 0 {
return 0
}
if len(g.nodes) == maxInt {
panic(fmt.Sprintf("simple: cannot allocate node: no slot"))
}
var id int
if g.freeIDs.Len() != 0 && g.freeIDs.TakeMin(&id) {
return id
}
if id = g.usedIDs.Max(); id < maxInt {
return id + 1
}
for id = 0; id < maxInt; id++ {
if !g.usedIDs.Has(id) {
return id
}
}
panic("unreachable")
}
// AddNode adds n to the graph. It panics if the added node ID matches an existing node ID.
func (g *UndirectedGraph) AddNode(n graph.Node) {
if _, exists := g.nodes[n.ID()]; exists {
panic(fmt.Sprintf("simple: node ID collision: %d", n.ID()))
}
g.nodes[n.ID()] = n
g.edges[n.ID()] = &sliceEdgeHolder{self: n.ID()}
g.freeIDs.Remove(n.ID())
g.usedIDs.Insert(n.ID())
}
// RemoveNode removes n from the graph, as well as any edges attached to it. If the node
// is not in the graph it is a no-op.
func (g *UndirectedGraph) RemoveNode(n graph.Node) {
if _, ok := g.nodes[n.ID()]; !ok {
return
}
delete(g.nodes, n.ID())
g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) {
g.edges[neighbor] = g.edges[neighbor].Delete(n.ID())
})
delete(g.edges, n.ID())
g.freeIDs.Insert(n.ID())
g.usedIDs.Remove(n.ID())
}
// SetEdge adds e, an edge from one node to another. If the nodes do not exist, they are added.
// It will panic if the IDs of the e.From and e.To are equal.
func (g *UndirectedGraph) SetEdge(e graph.Edge) {
var (
from = e.From()
fid = from.ID()
to = e.To()
tid = to.ID()
)
if fid == tid {
panic("simple: adding self edge")
}
if !g.Has(from) {
g.AddNode(from)
}
if !g.Has(to) {
g.AddNode(to)
}
g.edges[fid] = g.edges[fid].Set(tid, e)
g.edges[tid] = g.edges[tid].Set(fid, e)
}
// RemoveEdge removes e from the graph, leaving the terminal nodes. If the edge does not exist
// it is a no-op.
func (g *UndirectedGraph) RemoveEdge(e graph.Edge) {
from, to := e.From(), e.To()
if _, ok := g.nodes[from.ID()]; !ok {
return
}
if _, ok := g.nodes[to.ID()]; !ok {
return
}
g.edges[from.ID()] = g.edges[from.ID()].Delete(to.ID())
g.edges[to.ID()] = g.edges[to.ID()].Delete(from.ID())
}
// Node returns the node in the graph with the given ID.
func (g *UndirectedGraph) Node(id int) graph.Node {
return g.nodes[id]
}
// Has returns whether the node exists within the graph.
func (g *UndirectedGraph) Has(n graph.Node) bool {
_, ok := g.nodes[n.ID()]
return ok
}
// Nodes returns all the nodes in the graph.
func (g *UndirectedGraph) Nodes() []graph.Node {
nodes := make([]graph.Node, len(g.nodes))
i := 0
for _, n := range g.nodes {
nodes[i] = n
i++
}
return nodes
}
// Edges returns all the edges in the graph.
func (g *UndirectedGraph) Edges() []graph.Edge {
var edges []graph.Edge
seen := make(map[[2]int]struct{})
for _, u := range g.edges {
u.Visit(func(neighbor int, e graph.Edge) {
uid := e.From().ID()
vid := e.To().ID()
if _, ok := seen[[2]int{uid, vid}]; ok {
return
}
seen[[2]int{uid, vid}] = struct{}{}
seen[[2]int{vid, uid}] = struct{}{}
edges = append(edges, e)
})
}
return edges
}
// From returns all nodes in g that can be reached directly from n.
func (g *UndirectedGraph) From(n graph.Node) []graph.Node {
if !g.Has(n) {
return nil
}
nodes := make([]graph.Node, g.edges[n.ID()].Len())
i := 0
g.edges[n.ID()].Visit(func(neighbor int, edge graph.Edge) {
nodes[i] = g.nodes[neighbor]
i++
})
return nodes
}
// HasEdgeBetween returns whether an edge exists between nodes x and y.
func (g *UndirectedGraph) HasEdgeBetween(x, y graph.Node) bool {
_, ok := g.edges[x.ID()].Get(y.ID())
return ok
}
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
// The node v must be directly reachable from u as defined by the From method.
func (g *UndirectedGraph) Edge(u, v graph.Node) graph.Edge {
return g.EdgeBetween(u, v)
}
// EdgeBetween returns the edge between nodes x and y.
func (g *UndirectedGraph) EdgeBetween(x, y graph.Node) graph.Edge {
// We don't need to check if neigh exists because
// it's implicit in the edges access.
if !g.Has(x) {
return nil
}
edge, _ := g.edges[x.ID()].Get(y.ID())
return edge
}
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
// If x and y are the same node or there is no joining edge between the two nodes the weight
// value returned is either the graph's absent or self value. Weight returns true if an edge
// exists between x and y or if x and y have the same ID, false otherwise.
func (g *UndirectedGraph) Weight(x, y graph.Node) (w float64, ok bool) {
xid := x.ID()
yid := y.ID()
if xid == yid {
return g.self, true
}
if n, ok := g.edges[xid]; ok {
if e, ok := n.Get(yid); ok {
return e.Weight(), true
}
}
return g.absent, false
}
// Degree returns the degree of n in g.
func (g *UndirectedGraph) Degree(n graph.Node) int {
if _, ok := g.nodes[n.ID()]; !ok {
return 0
}
return g.edges[n.ID()].Len()
}