blob: bb5c2984df5bd0e26727fc618b96c302c6b0b1f7 [file] [log] [blame]
/*
Copyright 2015 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package ipallocator
import (
"errors"
"fmt"
api "k8s.io/kubernetes/pkg/apis/core"
"k8s.io/kubernetes/pkg/registry/core/service/allocator"
"math/big"
"net"
)
// Interface manages the allocation of IP addresses out of a range. Interface
// should be threadsafe.
type Interface interface {
Allocate(net.IP) error
AllocateNext() (net.IP, error)
Release(net.IP) error
ForEach(func(net.IP))
// For testing
Has(ip net.IP) bool
}
var (
ErrFull = errors.New("range is full")
ErrAllocated = errors.New("provided IP is already allocated")
ErrMismatchedNetwork = errors.New("the provided network does not match the current range")
)
type ErrNotInRange struct {
ValidRange string
}
func (e *ErrNotInRange) Error() string {
return fmt.Sprintf("provided IP is not in the valid range. The range of valid IPs is %s", e.ValidRange)
}
// Range is a contiguous block of IPs that can be allocated atomically.
//
// The internal structure of the range is:
//
// For CIDR 10.0.0.0/24
// 254 addresses usable out of 256 total (minus base and broadcast IPs)
// The number of usable addresses is r.max
//
// CIDR base IP CIDR broadcast IP
// 10.0.0.0 10.0.0.255
// | |
// 0 1 2 3 4 5 ... ... 253 254 255
// | |
// r.base r.base + r.max
// | |
// offset #0 of r.allocated last offset of r.allocated
type Range struct {
net *net.IPNet
// base is a cached version of the start IP in the CIDR range as a *big.Int
base *big.Int
// max is the maximum size of the usable addresses in the range
max int
alloc allocator.Interface
}
// NewAllocatorCIDRRange creates a Range over a net.IPNet, calling allocatorFactory to construct the backing store.
func NewAllocatorCIDRRange(cidr *net.IPNet, allocatorFactory allocator.AllocatorFactory) *Range {
max := RangeSize(cidr)
base := bigForIP(cidr.IP)
rangeSpec := cidr.String()
r := Range{
net: cidr,
base: base.Add(base, big.NewInt(1)), // don't use the network base
max: maximum(0, int(max-2)), // don't use the network broadcast,
}
r.alloc = allocatorFactory(r.max, rangeSpec)
return &r
}
// Helper that wraps NewAllocatorCIDRRange, for creating a range backed by an in-memory store.
func NewCIDRRange(cidr *net.IPNet) *Range {
return NewAllocatorCIDRRange(cidr, func(max int, rangeSpec string) allocator.Interface {
return allocator.NewAllocationMap(max, rangeSpec)
})
}
// NewFromSnapshot allocates a Range and initializes it from a snapshot.
func NewFromSnapshot(snap *api.RangeAllocation) (*Range, error) {
_, ipnet, err := net.ParseCIDR(snap.Range)
if err != nil {
return nil, err
}
r := NewCIDRRange(ipnet)
if err := r.Restore(ipnet, snap.Data); err != nil {
return nil, err
}
return r, nil
}
func maximum(a, b int) int {
if a > b {
return a
}
return b
}
// Free returns the count of IP addresses left in the range.
func (r *Range) Free() int {
return r.alloc.Free()
}
// Used returns the count of IP addresses used in the range.
func (r *Range) Used() int {
return r.max - r.alloc.Free()
}
// CIDR returns the CIDR covered by the range.
func (r *Range) CIDR() net.IPNet {
return *r.net
}
// Allocate attempts to reserve the provided IP. ErrNotInRange or
// ErrAllocated will be returned if the IP is not valid for this range
// or has already been reserved. ErrFull will be returned if there
// are no addresses left.
func (r *Range) Allocate(ip net.IP) error {
ok, offset := r.contains(ip)
if !ok {
return &ErrNotInRange{r.net.String()}
}
allocated, err := r.alloc.Allocate(offset)
if err != nil {
return err
}
if !allocated {
return ErrAllocated
}
return nil
}
// AllocateNext reserves one of the IPs from the pool. ErrFull may
// be returned if there are no addresses left.
func (r *Range) AllocateNext() (net.IP, error) {
offset, ok, err := r.alloc.AllocateNext()
if err != nil {
return nil, err
}
if !ok {
return nil, ErrFull
}
return addIPOffset(r.base, offset), nil
}
// Release releases the IP back to the pool. Releasing an
// unallocated IP or an IP out of the range is a no-op and
// returns no error.
func (r *Range) Release(ip net.IP) error {
ok, offset := r.contains(ip)
if !ok {
return nil
}
return r.alloc.Release(offset)
}
// ForEach calls the provided function for each allocated IP.
func (r *Range) ForEach(fn func(net.IP)) {
r.alloc.ForEach(func(offset int) {
ip, _ := GetIndexedIP(r.net, offset+1) // +1 because Range doesn't store IP 0
fn(ip)
})
}
// Has returns true if the provided IP is already allocated and a call
// to Allocate(ip) would fail with ErrAllocated.
func (r *Range) Has(ip net.IP) bool {
ok, offset := r.contains(ip)
if !ok {
return false
}
return r.alloc.Has(offset)
}
// Snapshot saves the current state of the pool.
func (r *Range) Snapshot(dst *api.RangeAllocation) error {
snapshottable, ok := r.alloc.(allocator.Snapshottable)
if !ok {
return fmt.Errorf("not a snapshottable allocator")
}
rangeString, data := snapshottable.Snapshot()
dst.Range = rangeString
dst.Data = data
return nil
}
// Restore restores the pool to the previously captured state. ErrMismatchedNetwork
// is returned if the provided IPNet range doesn't exactly match the previous range.
func (r *Range) Restore(net *net.IPNet, data []byte) error {
if !net.IP.Equal(r.net.IP) || net.Mask.String() != r.net.Mask.String() {
return ErrMismatchedNetwork
}
snapshottable, ok := r.alloc.(allocator.Snapshottable)
if !ok {
return fmt.Errorf("not a snapshottable allocator")
}
snapshottable.Restore(net.String(), data)
return nil
}
// contains returns true and the offset if the ip is in the range, and false
// and nil otherwise. The first and last addresses of the CIDR are omitted.
func (r *Range) contains(ip net.IP) (bool, int) {
if !r.net.Contains(ip) {
return false, 0
}
offset := calculateIPOffset(r.base, ip)
if offset < 0 || offset >= r.max {
return false, 0
}
return true, offset
}
// bigForIP creates a big.Int based on the provided net.IP
func bigForIP(ip net.IP) *big.Int {
b := ip.To4()
if b == nil {
b = ip.To16()
}
return big.NewInt(0).SetBytes(b)
}
// addIPOffset adds the provided integer offset to a base big.Int representing a
// net.IP
func addIPOffset(base *big.Int, offset int) net.IP {
return net.IP(big.NewInt(0).Add(base, big.NewInt(int64(offset))).Bytes())
}
// calculateIPOffset calculates the integer offset of ip from base such that
// base + offset = ip. It requires ip >= base.
func calculateIPOffset(base *big.Int, ip net.IP) int {
return int(big.NewInt(0).Sub(bigForIP(ip), base).Int64())
}
// RangeSize returns the size of a range in valid addresses.
func RangeSize(subnet *net.IPNet) int64 {
ones, bits := subnet.Mask.Size()
if bits == 32 && (bits-ones) >= 31 || bits == 128 && (bits-ones) >= 127 {
return 0
}
// For IPv6, the max size will be limited to 65536
// This is due to the allocator keeping track of all the
// allocated IP's in a bitmap. This will keep the size of
// the bitmap to 64k.
if bits == 128 && (bits-ones) >= 16 {
return int64(1) << uint(16)
} else {
return int64(1) << uint(bits-ones)
}
}
// GetIndexedIP returns a net.IP that is subnet.IP + index in the contiguous IP space.
func GetIndexedIP(subnet *net.IPNet, index int) (net.IP, error) {
ip := addIPOffset(bigForIP(subnet.IP), index)
if !subnet.Contains(ip) {
return nil, fmt.Errorf("can't generate IP with index %d from subnet. subnet too small. subnet: %q", index, subnet)
}
return ip, nil
}