blob: f474b55df9e52553a587ae0f4d2551936a601b56 [file] [log] [blame]
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// The Controller sets tainted annotations on nodes.
// Tainted nodes should not be used for new work loads and
// some effort should be given to getting existing work
// loads off of tainted nodes.
package nodelifecycle
import (
"context"
"fmt"
"hash/fnv"
"io"
"sync"
"time"
"k8s.io/klog"
coordv1beta1 "k8s.io/api/coordination/v1beta1"
"k8s.io/api/core/v1"
apiequality "k8s.io/apimachinery/pkg/api/equality"
apierrors "k8s.io/apimachinery/pkg/api/errors"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/labels"
"k8s.io/apimachinery/pkg/types"
utilruntime "k8s.io/apimachinery/pkg/util/runtime"
"k8s.io/apimachinery/pkg/util/wait"
utilfeature "k8s.io/apiserver/pkg/util/feature"
coordinformers "k8s.io/client-go/informers/coordination/v1beta1"
coreinformers "k8s.io/client-go/informers/core/v1"
extensionsinformers "k8s.io/client-go/informers/extensions/v1beta1"
clientset "k8s.io/client-go/kubernetes"
"k8s.io/client-go/kubernetes/scheme"
v1core "k8s.io/client-go/kubernetes/typed/core/v1"
coordlisters "k8s.io/client-go/listers/coordination/v1beta1"
corelisters "k8s.io/client-go/listers/core/v1"
extensionslisters "k8s.io/client-go/listers/extensions/v1beta1"
"k8s.io/client-go/tools/cache"
"k8s.io/client-go/tools/record"
"k8s.io/client-go/util/flowcontrol"
"k8s.io/client-go/util/workqueue"
cloudprovider "k8s.io/cloud-provider"
v1node "k8s.io/kubernetes/pkg/api/v1/node"
"k8s.io/kubernetes/pkg/controller"
"k8s.io/kubernetes/pkg/controller/nodelifecycle/scheduler"
nodeutil "k8s.io/kubernetes/pkg/controller/util/node"
"k8s.io/kubernetes/pkg/features"
schedulerapi "k8s.io/kubernetes/pkg/scheduler/api"
"k8s.io/kubernetes/pkg/util/metrics"
utilnode "k8s.io/kubernetes/pkg/util/node"
"k8s.io/kubernetes/pkg/util/system"
taintutils "k8s.io/kubernetes/pkg/util/taints"
)
func init() {
// Register prometheus metrics
Register()
}
var (
// UnreachableTaintTemplate is the taint for when a node becomes unreachable.
UnreachableTaintTemplate = &v1.Taint{
Key: schedulerapi.TaintNodeUnreachable,
Effect: v1.TaintEffectNoExecute,
}
// NotReadyTaintTemplate is the taint for when a node is not ready for
// executing pods
NotReadyTaintTemplate = &v1.Taint{
Key: schedulerapi.TaintNodeNotReady,
Effect: v1.TaintEffectNoExecute,
}
// map {NodeConditionType: {ConditionStatus: TaintKey}}
// represents which NodeConditionType under which ConditionStatus should be
// tainted with which TaintKey
// for certain NodeConditionType, there are multiple {ConditionStatus,TaintKey} pairs
nodeConditionToTaintKeyStatusMap = map[v1.NodeConditionType]map[v1.ConditionStatus]string{
v1.NodeReady: {
v1.ConditionFalse: schedulerapi.TaintNodeNotReady,
v1.ConditionUnknown: schedulerapi.TaintNodeUnreachable,
},
v1.NodeMemoryPressure: {
v1.ConditionTrue: schedulerapi.TaintNodeMemoryPressure,
},
v1.NodeOutOfDisk: {
v1.ConditionTrue: schedulerapi.TaintNodeOutOfDisk,
},
v1.NodeDiskPressure: {
v1.ConditionTrue: schedulerapi.TaintNodeDiskPressure,
},
v1.NodeNetworkUnavailable: {
v1.ConditionTrue: schedulerapi.TaintNodeNetworkUnavailable,
},
v1.NodePIDPressure: {
v1.ConditionTrue: schedulerapi.TaintNodePIDPressure,
},
}
taintKeyToNodeConditionMap = map[string]v1.NodeConditionType{
schedulerapi.TaintNodeNotReady: v1.NodeReady,
schedulerapi.TaintNodeUnreachable: v1.NodeReady,
schedulerapi.TaintNodeNetworkUnavailable: v1.NodeNetworkUnavailable,
schedulerapi.TaintNodeMemoryPressure: v1.NodeMemoryPressure,
schedulerapi.TaintNodeOutOfDisk: v1.NodeOutOfDisk,
schedulerapi.TaintNodeDiskPressure: v1.NodeDiskPressure,
schedulerapi.TaintNodePIDPressure: v1.NodePIDPressure,
}
)
// ZoneState is the state of a given zone.
type ZoneState string
const (
stateInitial = ZoneState("Initial")
stateNormal = ZoneState("Normal")
stateFullDisruption = ZoneState("FullDisruption")
statePartialDisruption = ZoneState("PartialDisruption")
)
const (
// The amount of time the nodecontroller should sleep between retrying node health updates
retrySleepTime = 20 * time.Millisecond
)
type nodeHealthData struct {
probeTimestamp metav1.Time
readyTransitionTimestamp metav1.Time
status *v1.NodeStatus
lease *coordv1beta1.Lease
}
// Controller is the controller that manages node's life cycle.
type Controller struct {
taintManager *scheduler.NoExecuteTaintManager
podInformerSynced cache.InformerSynced
cloud cloudprovider.Interface
kubeClient clientset.Interface
// This timestamp is to be used instead of LastProbeTime stored in Condition. We do this
// to aviod the problem with time skew across the cluster.
now func() metav1.Time
enterPartialDisruptionFunc func(nodeNum int) float32
enterFullDisruptionFunc func(nodeNum int) float32
computeZoneStateFunc func(nodeConditions []*v1.NodeCondition) (int, ZoneState)
knownNodeSet map[string]*v1.Node
// per Node map storing last observed health together with a local time when it was observed.
nodeHealthMap map[string]*nodeHealthData
// Lock to access evictor workers
evictorLock sync.Mutex
// workers that evicts pods from unresponsive nodes.
zonePodEvictor map[string]*scheduler.RateLimitedTimedQueue
// workers that are responsible for tainting nodes.
zoneNoExecuteTainter map[string]*scheduler.RateLimitedTimedQueue
zoneStates map[string]ZoneState
daemonSetStore extensionslisters.DaemonSetLister
daemonSetInformerSynced cache.InformerSynced
leaseLister coordlisters.LeaseLister
leaseInformerSynced cache.InformerSynced
nodeLister corelisters.NodeLister
nodeInformerSynced cache.InformerSynced
nodeExistsInCloudProvider func(types.NodeName) (bool, error)
nodeShutdownInCloudProvider func(context.Context, *v1.Node) (bool, error)
recorder record.EventRecorder
// Value controlling Controller monitoring period, i.e. how often does Controller
// check node health signal posted from kubelet. This value should be lower than
// nodeMonitorGracePeriod.
// TODO: Change node health monitor to watch based.
nodeMonitorPeriod time.Duration
// When node is just created, e.g. cluster bootstrap or node creation, we give
// a longer grace period.
nodeStartupGracePeriod time.Duration
// Controller will not proactively sync node health, but will monitor node
// health signal updated from kubelet. There are 2 kinds of node healthiness
// signals: NodeStatus and NodeLease. NodeLease signal is generated only when
// NodeLease feature is enabled. If it doesn't receive update for this amount
// of time, it will start posting "NodeReady==ConditionUnknown". The amount of
// time before which Controller start evicting pods is controlled via flag
// 'pod-eviction-timeout'.
// Note: be cautious when changing the constant, it must work with
// nodeStatusUpdateFrequency in kubelet and renewInterval in NodeLease
// controller. The node health signal update frequency is the minimal of the
// two.
// There are several constraints:
// 1. nodeMonitorGracePeriod must be N times more than the node health signal
// update frequency, where N means number of retries allowed for kubelet to
// post node status/lease. It is pointless to make nodeMonitorGracePeriod
// be less than the node health signal update frequency, since there will
// only be fresh values from Kubelet at an interval of node health signal
// update frequency. The constant must be less than podEvictionTimeout.
// 2. nodeMonitorGracePeriod can't be too large for user experience - larger
// value takes longer for user to see up-to-date node health.
nodeMonitorGracePeriod time.Duration
podEvictionTimeout time.Duration
evictionLimiterQPS float32
secondaryEvictionLimiterQPS float32
largeClusterThreshold int32
unhealthyZoneThreshold float32
// if set to true Controller will start TaintManager that will evict Pods from
// tainted nodes, if they're not tolerated.
runTaintManager bool
// if set to true Controller will taint Nodes with 'TaintNodeNotReady' and 'TaintNodeUnreachable'
// taints instead of evicting Pods itself.
useTaintBasedEvictions bool
// if set to true, NodeController will taint Nodes based on its condition for 'NetworkUnavailable',
// 'MemoryPressure', 'OutOfDisk' and 'DiskPressure'.
taintNodeByCondition bool
nodeUpdateQueue workqueue.Interface
}
// NewNodeLifecycleController returns a new taint controller.
func NewNodeLifecycleController(
leaseInformer coordinformers.LeaseInformer,
podInformer coreinformers.PodInformer,
nodeInformer coreinformers.NodeInformer,
daemonSetInformer extensionsinformers.DaemonSetInformer,
cloud cloudprovider.Interface,
kubeClient clientset.Interface,
nodeMonitorPeriod time.Duration,
nodeStartupGracePeriod time.Duration,
nodeMonitorGracePeriod time.Duration,
podEvictionTimeout time.Duration,
evictionLimiterQPS float32,
secondaryEvictionLimiterQPS float32,
largeClusterThreshold int32,
unhealthyZoneThreshold float32,
runTaintManager bool,
useTaintBasedEvictions bool,
taintNodeByCondition bool) (*Controller, error) {
if kubeClient == nil {
klog.Fatalf("kubeClient is nil when starting Controller")
}
eventBroadcaster := record.NewBroadcaster()
recorder := eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "node-controller"})
eventBroadcaster.StartLogging(klog.Infof)
klog.Infof("Sending events to api server.")
eventBroadcaster.StartRecordingToSink(
&v1core.EventSinkImpl{
Interface: v1core.New(kubeClient.CoreV1().RESTClient()).Events(""),
})
if kubeClient.CoreV1().RESTClient().GetRateLimiter() != nil {
metrics.RegisterMetricAndTrackRateLimiterUsage("node_lifecycle_controller", kubeClient.CoreV1().RESTClient().GetRateLimiter())
}
nc := &Controller{
cloud: cloud,
kubeClient: kubeClient,
now: metav1.Now,
knownNodeSet: make(map[string]*v1.Node),
nodeHealthMap: make(map[string]*nodeHealthData),
nodeExistsInCloudProvider: func(nodeName types.NodeName) (bool, error) {
return nodeutil.ExistsInCloudProvider(cloud, nodeName)
},
nodeShutdownInCloudProvider: func(ctx context.Context, node *v1.Node) (bool, error) {
return nodeutil.ShutdownInCloudProvider(ctx, cloud, node)
},
recorder: recorder,
nodeMonitorPeriod: nodeMonitorPeriod,
nodeStartupGracePeriod: nodeStartupGracePeriod,
nodeMonitorGracePeriod: nodeMonitorGracePeriod,
zonePodEvictor: make(map[string]*scheduler.RateLimitedTimedQueue),
zoneNoExecuteTainter: make(map[string]*scheduler.RateLimitedTimedQueue),
zoneStates: make(map[string]ZoneState),
podEvictionTimeout: podEvictionTimeout,
evictionLimiterQPS: evictionLimiterQPS,
secondaryEvictionLimiterQPS: secondaryEvictionLimiterQPS,
largeClusterThreshold: largeClusterThreshold,
unhealthyZoneThreshold: unhealthyZoneThreshold,
runTaintManager: runTaintManager,
useTaintBasedEvictions: useTaintBasedEvictions && runTaintManager,
taintNodeByCondition: taintNodeByCondition,
nodeUpdateQueue: workqueue.New(),
}
if useTaintBasedEvictions {
klog.Infof("Controller is using taint based evictions.")
}
nc.enterPartialDisruptionFunc = nc.ReducedQPSFunc
nc.enterFullDisruptionFunc = nc.HealthyQPSFunc
nc.computeZoneStateFunc = nc.ComputeZoneState
podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
pod := obj.(*v1.Pod)
if nc.taintManager != nil {
nc.taintManager.PodUpdated(nil, pod)
}
},
UpdateFunc: func(prev, obj interface{}) {
prevPod := prev.(*v1.Pod)
newPod := obj.(*v1.Pod)
if nc.taintManager != nil {
nc.taintManager.PodUpdated(prevPod, newPod)
}
},
DeleteFunc: func(obj interface{}) {
pod, isPod := obj.(*v1.Pod)
// We can get DeletedFinalStateUnknown instead of *v1.Pod here and we need to handle that correctly.
if !isPod {
deletedState, ok := obj.(cache.DeletedFinalStateUnknown)
if !ok {
klog.Errorf("Received unexpected object: %v", obj)
return
}
pod, ok = deletedState.Obj.(*v1.Pod)
if !ok {
klog.Errorf("DeletedFinalStateUnknown contained non-Pod object: %v", deletedState.Obj)
return
}
}
if nc.taintManager != nil {
nc.taintManager.PodUpdated(pod, nil)
}
},
})
nc.podInformerSynced = podInformer.Informer().HasSynced
if nc.runTaintManager {
podLister := podInformer.Lister()
podGetter := func(name, namespace string) (*v1.Pod, error) { return podLister.Pods(namespace).Get(name) }
nodeLister := nodeInformer.Lister()
nodeGetter := func(name string) (*v1.Node, error) { return nodeLister.Get(name) }
nc.taintManager = scheduler.NewNoExecuteTaintManager(kubeClient, podGetter, nodeGetter)
nodeInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: nodeutil.CreateAddNodeHandler(func(node *v1.Node) error {
nc.taintManager.NodeUpdated(nil, node)
return nil
}),
UpdateFunc: nodeutil.CreateUpdateNodeHandler(func(oldNode, newNode *v1.Node) error {
nc.taintManager.NodeUpdated(oldNode, newNode)
return nil
}),
DeleteFunc: nodeutil.CreateDeleteNodeHandler(func(node *v1.Node) error {
nc.taintManager.NodeUpdated(node, nil)
return nil
}),
})
}
if nc.taintNodeByCondition {
klog.Infof("Controller will taint node by condition.")
nodeInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: nodeutil.CreateAddNodeHandler(func(node *v1.Node) error {
nc.nodeUpdateQueue.Add(node.Name)
return nil
}),
UpdateFunc: nodeutil.CreateUpdateNodeHandler(func(_, newNode *v1.Node) error {
nc.nodeUpdateQueue.Add(newNode.Name)
return nil
}),
})
}
// NOTE(resouer): nodeInformer to substitute deprecated taint key (notReady -> not-ready).
// Remove this logic when we don't need this backwards compatibility
nodeInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{
AddFunc: nodeutil.CreateAddNodeHandler(func(node *v1.Node) error {
return nc.doFixDeprecatedTaintKeyPass(node)
}),
UpdateFunc: nodeutil.CreateUpdateNodeHandler(func(_, newNode *v1.Node) error {
return nc.doFixDeprecatedTaintKeyPass(newNode)
}),
})
nc.leaseLister = leaseInformer.Lister()
if utilfeature.DefaultFeatureGate.Enabled(features.NodeLease) {
nc.leaseInformerSynced = leaseInformer.Informer().HasSynced
} else {
// Always indicate that lease is synced to prevent syncing lease.
nc.leaseInformerSynced = func() bool { return true }
}
nc.nodeLister = nodeInformer.Lister()
nc.nodeInformerSynced = nodeInformer.Informer().HasSynced
nc.daemonSetStore = daemonSetInformer.Lister()
nc.daemonSetInformerSynced = daemonSetInformer.Informer().HasSynced
return nc, nil
}
// Run starts an asynchronous loop that monitors the status of cluster nodes.
func (nc *Controller) Run(stopCh <-chan struct{}) {
defer utilruntime.HandleCrash()
klog.Infof("Starting node controller")
defer klog.Infof("Shutting down node controller")
if !controller.WaitForCacheSync("taint", stopCh, nc.leaseInformerSynced, nc.nodeInformerSynced, nc.podInformerSynced, nc.daemonSetInformerSynced) {
return
}
if nc.runTaintManager {
go nc.taintManager.Run(stopCh)
}
if nc.taintNodeByCondition {
// Close node update queue to cleanup go routine.
defer nc.nodeUpdateQueue.ShutDown()
// Start workers to update NoSchedule taint for nodes.
for i := 0; i < scheduler.UpdateWorkerSize; i++ {
// Thanks to "workqueue", each worker just need to get item from queue, because
// the item is flagged when got from queue: if new event come, the new item will
// be re-queued until "Done", so no more than one worker handle the same item and
// no event missed.
go wait.Until(nc.doNoScheduleTaintingPassWorker, time.Second, stopCh)
}
}
if nc.useTaintBasedEvictions {
// Handling taint based evictions. Because we don't want a dedicated logic in TaintManager for NC-originated
// taints and we normally don't rate limit evictions caused by taints, we need to rate limit adding taints.
go wait.Until(nc.doNoExecuteTaintingPass, scheduler.NodeEvictionPeriod, stopCh)
} else {
// Managing eviction of nodes:
// When we delete pods off a node, if the node was not empty at the time we then
// queue an eviction watcher. If we hit an error, retry deletion.
go wait.Until(nc.doEvictionPass, scheduler.NodeEvictionPeriod, stopCh)
}
// Incorporate the results of node health signal pushed from kubelet to master.
go wait.Until(func() {
if err := nc.monitorNodeHealth(); err != nil {
klog.Errorf("Error monitoring node health: %v", err)
}
}, nc.nodeMonitorPeriod, stopCh)
<-stopCh
}
// doFixDeprecatedTaintKeyPass checks and replaces deprecated taint key with proper key name if needed.
func (nc *Controller) doFixDeprecatedTaintKeyPass(node *v1.Node) error {
taintsToAdd := []*v1.Taint{}
taintsToDel := []*v1.Taint{}
for _, taint := range node.Spec.Taints {
if taint.Key == schedulerapi.DeprecatedTaintNodeNotReady {
tDel := taint
taintsToDel = append(taintsToDel, &tDel)
tAdd := taint
tAdd.Key = schedulerapi.TaintNodeNotReady
taintsToAdd = append(taintsToAdd, &tAdd)
}
if taint.Key == schedulerapi.DeprecatedTaintNodeUnreachable {
tDel := taint
taintsToDel = append(taintsToDel, &tDel)
tAdd := taint
tAdd.Key = schedulerapi.TaintNodeUnreachable
taintsToAdd = append(taintsToAdd, &tAdd)
}
}
if len(taintsToAdd) == 0 && len(taintsToDel) == 0 {
return nil
}
klog.Warningf("Detected deprecated taint keys: %v on node: %v, will substitute them with %v",
taintsToDel, node.GetName(), taintsToAdd)
if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, taintsToAdd, taintsToDel, node) {
return fmt.Errorf("failed to swap taints of node %+v", node)
}
return nil
}
func (nc *Controller) doNoScheduleTaintingPassWorker() {
for {
obj, shutdown := nc.nodeUpdateQueue.Get()
// "nodeUpdateQueue" will be shutdown when "stopCh" closed;
// we do not need to re-check "stopCh" again.
if shutdown {
return
}
nodeName := obj.(string)
if err := nc.doNoScheduleTaintingPass(nodeName); err != nil {
// TODO (k82cn): Add nodeName back to the queue.
klog.Errorf("Failed to taint NoSchedule on node <%s>, requeue it: %v", nodeName, err)
}
nc.nodeUpdateQueue.Done(nodeName)
}
}
func (nc *Controller) doNoScheduleTaintingPass(nodeName string) error {
node, err := nc.nodeLister.Get(nodeName)
if err != nil {
// If node not found, just ignore it.
if apierrors.IsNotFound(err) {
return nil
}
return err
}
// Map node's condition to Taints.
var taints []v1.Taint
for _, condition := range node.Status.Conditions {
if taintMap, found := nodeConditionToTaintKeyStatusMap[condition.Type]; found {
if taintKey, found := taintMap[condition.Status]; found {
taints = append(taints, v1.Taint{
Key: taintKey,
Effect: v1.TaintEffectNoSchedule,
})
}
}
}
if node.Spec.Unschedulable {
// If unschedulable, append related taint.
taints = append(taints, v1.Taint{
Key: schedulerapi.TaintNodeUnschedulable,
Effect: v1.TaintEffectNoSchedule,
})
}
// Get exist taints of node.
nodeTaints := taintutils.TaintSetFilter(node.Spec.Taints, func(t *v1.Taint) bool {
// only NoSchedule taints are candidates to be compared with "taints" later
if t.Effect != v1.TaintEffectNoSchedule {
return false
}
// Find unschedulable taint of node.
if t.Key == schedulerapi.TaintNodeUnschedulable {
return true
}
// Find node condition taints of node.
_, found := taintKeyToNodeConditionMap[t.Key]
return found
})
taintsToAdd, taintsToDel := taintutils.TaintSetDiff(taints, nodeTaints)
// If nothing to add not delete, return true directly.
if len(taintsToAdd) == 0 && len(taintsToDel) == 0 {
return nil
}
if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, taintsToAdd, taintsToDel, node) {
return fmt.Errorf("failed to swap taints of node %+v", node)
}
return nil
}
func (nc *Controller) doNoExecuteTaintingPass() {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
for k := range nc.zoneNoExecuteTainter {
// Function should return 'false' and a time after which it should be retried, or 'true' if it shouldn't (it succeeded).
nc.zoneNoExecuteTainter[k].Try(func(value scheduler.TimedValue) (bool, time.Duration) {
node, err := nc.nodeLister.Get(value.Value)
if apierrors.IsNotFound(err) {
klog.Warningf("Node %v no longer present in nodeLister!", value.Value)
return true, 0
} else if err != nil {
klog.Warningf("Failed to get Node %v from the nodeLister: %v", value.Value, err)
// retry in 50 millisecond
return false, 50 * time.Millisecond
} else {
zone := utilnode.GetZoneKey(node)
evictionsNumber.WithLabelValues(zone).Inc()
}
_, condition := v1node.GetNodeCondition(&node.Status, v1.NodeReady)
// Because we want to mimic NodeStatus.Condition["Ready"] we make "unreachable" and "not ready" taints mutually exclusive.
taintToAdd := v1.Taint{}
oppositeTaint := v1.Taint{}
if condition.Status == v1.ConditionFalse {
taintToAdd = *NotReadyTaintTemplate
oppositeTaint = *UnreachableTaintTemplate
} else if condition.Status == v1.ConditionUnknown {
taintToAdd = *UnreachableTaintTemplate
oppositeTaint = *NotReadyTaintTemplate
} else {
// It seems that the Node is ready again, so there's no need to taint it.
klog.V(4).Infof("Node %v was in a taint queue, but it's ready now. Ignoring taint request.", value.Value)
return true, 0
}
return nodeutil.SwapNodeControllerTaint(nc.kubeClient, []*v1.Taint{&taintToAdd}, []*v1.Taint{&oppositeTaint}, node), 0
})
}
}
func (nc *Controller) doEvictionPass() {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
for k := range nc.zonePodEvictor {
// Function should return 'false' and a time after which it should be retried, or 'true' if it shouldn't (it succeeded).
nc.zonePodEvictor[k].Try(func(value scheduler.TimedValue) (bool, time.Duration) {
node, err := nc.nodeLister.Get(value.Value)
if apierrors.IsNotFound(err) {
klog.Warningf("Node %v no longer present in nodeLister!", value.Value)
} else if err != nil {
klog.Warningf("Failed to get Node %v from the nodeLister: %v", value.Value, err)
} else {
zone := utilnode.GetZoneKey(node)
evictionsNumber.WithLabelValues(zone).Inc()
}
nodeUID, _ := value.UID.(string)
remaining, err := nodeutil.DeletePods(nc.kubeClient, nc.recorder, value.Value, nodeUID, nc.daemonSetStore)
if err != nil {
utilruntime.HandleError(fmt.Errorf("unable to evict node %q: %v", value.Value, err))
return false, 0
}
if remaining {
klog.Infof("Pods awaiting deletion due to Controller eviction")
}
return true, 0
})
}
}
// monitorNodeHealth verifies node health are constantly updated by kubelet, and
// if not, post "NodeReady==ConditionUnknown". It also evicts all pods if node
// is not ready or not reachable for a long period of time.
func (nc *Controller) monitorNodeHealth() error {
// We are listing nodes from local cache as we can tolerate some small delays
// comparing to state from etcd and there is eventual consistency anyway.
nodes, err := nc.nodeLister.List(labels.Everything())
if err != nil {
return err
}
added, deleted, newZoneRepresentatives := nc.classifyNodes(nodes)
for i := range newZoneRepresentatives {
nc.addPodEvictorForNewZone(newZoneRepresentatives[i])
}
for i := range added {
klog.V(1).Infof("Controller observed a new Node: %#v", added[i].Name)
nodeutil.RecordNodeEvent(nc.recorder, added[i].Name, string(added[i].UID), v1.EventTypeNormal, "RegisteredNode", fmt.Sprintf("Registered Node %v in Controller", added[i].Name))
nc.knownNodeSet[added[i].Name] = added[i]
nc.addPodEvictorForNewZone(added[i])
if nc.useTaintBasedEvictions {
nc.markNodeAsReachable(added[i])
} else {
nc.cancelPodEviction(added[i])
}
}
for i := range deleted {
klog.V(1).Infof("Controller observed a Node deletion: %v", deleted[i].Name)
nodeutil.RecordNodeEvent(nc.recorder, deleted[i].Name, string(deleted[i].UID), v1.EventTypeNormal, "RemovingNode", fmt.Sprintf("Removing Node %v from Controller", deleted[i].Name))
delete(nc.knownNodeSet, deleted[i].Name)
}
zoneToNodeConditions := map[string][]*v1.NodeCondition{}
for i := range nodes {
var gracePeriod time.Duration
var observedReadyCondition v1.NodeCondition
var currentReadyCondition *v1.NodeCondition
node := nodes[i].DeepCopy()
if err := wait.PollImmediate(retrySleepTime, retrySleepTime*scheduler.NodeHealthUpdateRetry, func() (bool, error) {
gracePeriod, observedReadyCondition, currentReadyCondition, err = nc.tryUpdateNodeHealth(node)
if err == nil {
return true, nil
}
name := node.Name
node, err = nc.kubeClient.CoreV1().Nodes().Get(name, metav1.GetOptions{})
if err != nil {
klog.Errorf("Failed while getting a Node to retry updating node health. Probably Node %s was deleted.", name)
return false, err
}
return false, nil
}); err != nil {
klog.Errorf("Update health of Node '%v' from Controller error: %v. "+
"Skipping - no pods will be evicted.", node.Name, err)
continue
}
// We do not treat a master node as a part of the cluster for network disruption checking.
if !system.IsMasterNode(node.Name) {
zoneToNodeConditions[utilnode.GetZoneKey(node)] = append(zoneToNodeConditions[utilnode.GetZoneKey(node)], currentReadyCondition)
}
decisionTimestamp := nc.now()
if currentReadyCondition != nil {
// Check eviction timeout against decisionTimestamp
if observedReadyCondition.Status == v1.ConditionFalse {
if nc.useTaintBasedEvictions {
// We want to update the taint straight away if Node is already tainted with the UnreachableTaint
if taintutils.TaintExists(node.Spec.Taints, UnreachableTaintTemplate) {
taintToAdd := *NotReadyTaintTemplate
if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, []*v1.Taint{&taintToAdd}, []*v1.Taint{UnreachableTaintTemplate}, node) {
klog.Errorf("Failed to instantly swap UnreachableTaint to NotReadyTaint. Will try again in the next cycle.")
}
} else if nc.markNodeForTainting(node) {
klog.V(2).Infof("Node %v is NotReady as of %v. Adding it to the Taint queue.",
node.Name,
decisionTimestamp,
)
}
} else {
if decisionTimestamp.After(nc.nodeHealthMap[node.Name].readyTransitionTimestamp.Add(nc.podEvictionTimeout)) {
if nc.evictPods(node) {
klog.V(2).Infof("Node is NotReady. Adding Pods on Node %s to eviction queue: %v is later than %v + %v",
node.Name,
decisionTimestamp,
nc.nodeHealthMap[node.Name].readyTransitionTimestamp,
nc.podEvictionTimeout,
)
}
}
}
}
if observedReadyCondition.Status == v1.ConditionUnknown {
if nc.useTaintBasedEvictions {
// We want to update the taint straight away if Node is already tainted with the UnreachableTaint
if taintutils.TaintExists(node.Spec.Taints, NotReadyTaintTemplate) {
taintToAdd := *UnreachableTaintTemplate
if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, []*v1.Taint{&taintToAdd}, []*v1.Taint{NotReadyTaintTemplate}, node) {
klog.Errorf("Failed to instantly swap UnreachableTaint to NotReadyTaint. Will try again in the next cycle.")
}
} else if nc.markNodeForTainting(node) {
klog.V(2).Infof("Node %v is unresponsive as of %v. Adding it to the Taint queue.",
node.Name,
decisionTimestamp,
)
}
} else {
if decisionTimestamp.After(nc.nodeHealthMap[node.Name].probeTimestamp.Add(nc.podEvictionTimeout)) {
if nc.evictPods(node) {
klog.V(2).Infof("Node is unresponsive. Adding Pods on Node %s to eviction queues: %v is later than %v + %v",
node.Name,
decisionTimestamp,
nc.nodeHealthMap[node.Name].readyTransitionTimestamp,
nc.podEvictionTimeout-gracePeriod,
)
}
}
}
}
if observedReadyCondition.Status == v1.ConditionTrue {
if nc.useTaintBasedEvictions {
removed, err := nc.markNodeAsReachable(node)
if err != nil {
klog.Errorf("Failed to remove taints from node %v. Will retry in next iteration.", node.Name)
}
if removed {
klog.V(2).Infof("Node %s is healthy again, removing all taints", node.Name)
}
} else {
if nc.cancelPodEviction(node) {
klog.V(2).Infof("Node %s is ready again, cancelled pod eviction", node.Name)
}
}
// remove shutdown taint this is needed always depending do we use taintbased or not
err := nc.markNodeAsNotShutdown(node)
if err != nil {
klog.Errorf("Failed to remove taints from node %v. Will retry in next iteration.", node.Name)
}
}
// Report node event.
if currentReadyCondition.Status != v1.ConditionTrue && observedReadyCondition.Status == v1.ConditionTrue {
nodeutil.RecordNodeStatusChange(nc.recorder, node, "NodeNotReady")
if err = nodeutil.MarkAllPodsNotReady(nc.kubeClient, node); err != nil {
utilruntime.HandleError(fmt.Errorf("Unable to mark all pods NotReady on node %v: %v", node.Name, err))
}
}
// Check with the cloud provider to see if the node still exists. If it
// doesn't, delete the node immediately.
if currentReadyCondition.Status != v1.ConditionTrue && nc.cloud != nil {
// check is node shutdowned, if yes do not deleted it. Instead add taint
shutdown, err := nc.nodeShutdownInCloudProvider(context.TODO(), node)
if err != nil {
klog.Errorf("Error determining if node %v shutdown in cloud: %v", node.Name, err)
}
// node shutdown
if shutdown && err == nil {
err = controller.AddOrUpdateTaintOnNode(nc.kubeClient, node.Name, controller.ShutdownTaint)
if err != nil {
klog.Errorf("Error patching node taints: %v", err)
}
continue
}
exists, err := nc.nodeExistsInCloudProvider(types.NodeName(node.Name))
if err != nil {
klog.Errorf("Error determining if node %v exists in cloud: %v", node.Name, err)
continue
}
if !exists {
klog.V(2).Infof("Deleting node (no longer present in cloud provider): %s", node.Name)
nodeutil.RecordNodeEvent(nc.recorder, node.Name, string(node.UID), v1.EventTypeNormal, "DeletingNode", fmt.Sprintf("Deleting Node %v because it's not present according to cloud provider", node.Name))
go func(nodeName string) {
defer utilruntime.HandleCrash()
// Kubelet is not reporting and Cloud Provider says node
// is gone. Delete it without worrying about grace
// periods.
if err := nodeutil.ForcefullyDeleteNode(nc.kubeClient, nodeName); err != nil {
klog.Errorf("Unable to forcefully delete node %q: %v", nodeName, err)
}
}(node.Name)
}
}
}
}
nc.handleDisruption(zoneToNodeConditions, nodes)
return nil
}
// tryUpdateNodeHealth checks a given node's conditions and tries to update it. Returns grace period to
// which given node is entitled, state of current and last observed Ready Condition, and an error if it occurred.
func (nc *Controller) tryUpdateNodeHealth(node *v1.Node) (time.Duration, v1.NodeCondition, *v1.NodeCondition, error) {
var err error
var gracePeriod time.Duration
var observedReadyCondition v1.NodeCondition
_, currentReadyCondition := v1node.GetNodeCondition(&node.Status, v1.NodeReady)
if currentReadyCondition == nil {
// If ready condition is nil, then kubelet (or nodecontroller) never posted node status.
// A fake ready condition is created, where LastHeartbeatTime and LastTransitionTime is set
// to node.CreationTimestamp to avoid handle the corner case.
observedReadyCondition = v1.NodeCondition{
Type: v1.NodeReady,
Status: v1.ConditionUnknown,
LastHeartbeatTime: node.CreationTimestamp,
LastTransitionTime: node.CreationTimestamp,
}
gracePeriod = nc.nodeStartupGracePeriod
if _, found := nc.nodeHealthMap[node.Name]; found {
nc.nodeHealthMap[node.Name].status = &node.Status
} else {
nc.nodeHealthMap[node.Name] = &nodeHealthData{
status: &node.Status,
probeTimestamp: node.CreationTimestamp,
readyTransitionTimestamp: node.CreationTimestamp,
}
}
} else {
// If ready condition is not nil, make a copy of it, since we may modify it in place later.
observedReadyCondition = *currentReadyCondition
gracePeriod = nc.nodeMonitorGracePeriod
}
savedNodeHealth, found := nc.nodeHealthMap[node.Name]
// There are following cases to check:
// - both saved and new status have no Ready Condition set - we leave everything as it is,
// - saved status have no Ready Condition, but current one does - Controller was restarted with Node data already present in etcd,
// - saved status have some Ready Condition, but current one does not - it's an error, but we fill it up because that's probably a good thing to do,
// - both saved and current statuses have Ready Conditions and they have the same LastProbeTime - nothing happened on that Node, it may be
// unresponsive, so we leave it as it is,
// - both saved and current statuses have Ready Conditions, they have different LastProbeTimes, but the same Ready Condition State -
// everything's in order, no transition occurred, we update only probeTimestamp,
// - both saved and current statuses have Ready Conditions, different LastProbeTimes and different Ready Condition State -
// Ready Condition changed it state since we last seen it, so we update both probeTimestamp and readyTransitionTimestamp.
// TODO: things to consider:
// - if 'LastProbeTime' have gone back in time its probably an error, currently we ignore it,
// - currently only correct Ready State transition outside of Node Controller is marking it ready by Kubelet, we don't check
// if that's the case, but it does not seem necessary.
var savedCondition *v1.NodeCondition
var savedLease *coordv1beta1.Lease
if found {
_, savedCondition = v1node.GetNodeCondition(savedNodeHealth.status, v1.NodeReady)
savedLease = savedNodeHealth.lease
}
_, observedCondition := v1node.GetNodeCondition(&node.Status, v1.NodeReady)
if !found {
klog.Warningf("Missing timestamp for Node %s. Assuming now as a timestamp.", node.Name)
savedNodeHealth = &nodeHealthData{
status: &node.Status,
probeTimestamp: nc.now(),
readyTransitionTimestamp: nc.now(),
}
} else if savedCondition == nil && observedCondition != nil {
klog.V(1).Infof("Creating timestamp entry for newly observed Node %s", node.Name)
savedNodeHealth = &nodeHealthData{
status: &node.Status,
probeTimestamp: nc.now(),
readyTransitionTimestamp: nc.now(),
}
} else if savedCondition != nil && observedCondition == nil {
klog.Errorf("ReadyCondition was removed from Status of Node %s", node.Name)
// TODO: figure out what to do in this case. For now we do the same thing as above.
savedNodeHealth = &nodeHealthData{
status: &node.Status,
probeTimestamp: nc.now(),
readyTransitionTimestamp: nc.now(),
}
} else if savedCondition != nil && observedCondition != nil && savedCondition.LastHeartbeatTime != observedCondition.LastHeartbeatTime {
var transitionTime metav1.Time
// If ReadyCondition changed since the last time we checked, we update the transition timestamp to "now",
// otherwise we leave it as it is.
if savedCondition.LastTransitionTime != observedCondition.LastTransitionTime {
klog.V(3).Infof("ReadyCondition for Node %s transitioned from %v to %v", node.Name, savedCondition, observedCondition)
transitionTime = nc.now()
} else {
transitionTime = savedNodeHealth.readyTransitionTimestamp
}
if klog.V(5) {
klog.V(5).Infof("Node %s ReadyCondition updated. Updating timestamp: %+v vs %+v.", node.Name, savedNodeHealth.status, node.Status)
} else {
klog.V(3).Infof("Node %s ReadyCondition updated. Updating timestamp.", node.Name)
}
savedNodeHealth = &nodeHealthData{
status: &node.Status,
probeTimestamp: nc.now(),
readyTransitionTimestamp: transitionTime,
}
}
var observedLease *coordv1beta1.Lease
if utilfeature.DefaultFeatureGate.Enabled(features.NodeLease) {
// Always update the probe time if node lease is renewed.
// Note: If kubelet never posted the node status, but continues renewing the
// heartbeat leases, the node controller will assume the node is healthy and
// take no action.
observedLease, _ = nc.leaseLister.Leases(v1.NamespaceNodeLease).Get(node.Name)
if observedLease != nil && (savedLease == nil || savedLease.Spec.RenewTime.Before(observedLease.Spec.RenewTime)) {
savedNodeHealth.lease = observedLease
savedNodeHealth.probeTimestamp = nc.now()
}
}
nc.nodeHealthMap[node.Name] = savedNodeHealth
if nc.now().After(savedNodeHealth.probeTimestamp.Add(gracePeriod)) {
// NodeReady condition or lease was last set longer ago than gracePeriod, so
// update it to Unknown (regardless of its current value) in the master.
if currentReadyCondition == nil {
klog.V(2).Infof("node %v is never updated by kubelet", node.Name)
node.Status.Conditions = append(node.Status.Conditions, v1.NodeCondition{
Type: v1.NodeReady,
Status: v1.ConditionUnknown,
Reason: "NodeStatusNeverUpdated",
Message: fmt.Sprintf("Kubelet never posted node status."),
LastHeartbeatTime: node.CreationTimestamp,
LastTransitionTime: nc.now(),
})
} else {
klog.V(4).Infof("node %v hasn't been updated for %+v. Last ready condition is: %+v",
node.Name, nc.now().Time.Sub(savedNodeHealth.probeTimestamp.Time), observedReadyCondition)
if observedReadyCondition.Status != v1.ConditionUnknown {
currentReadyCondition.Status = v1.ConditionUnknown
currentReadyCondition.Reason = "NodeStatusUnknown"
currentReadyCondition.Message = "Kubelet stopped posting node status."
// LastProbeTime is the last time we heard from kubelet.
currentReadyCondition.LastHeartbeatTime = observedReadyCondition.LastHeartbeatTime
currentReadyCondition.LastTransitionTime = nc.now()
}
}
// remaining node conditions should also be set to Unknown
remainingNodeConditionTypes := []v1.NodeConditionType{
v1.NodeOutOfDisk,
v1.NodeMemoryPressure,
v1.NodeDiskPressure,
v1.NodePIDPressure,
// We don't change 'NodeNetworkUnavailable' condition, as it's managed on a control plane level.
// v1.NodeNetworkUnavailable,
}
nowTimestamp := nc.now()
for _, nodeConditionType := range remainingNodeConditionTypes {
_, currentCondition := v1node.GetNodeCondition(&node.Status, nodeConditionType)
if currentCondition == nil {
klog.V(2).Infof("Condition %v of node %v was never updated by kubelet", nodeConditionType, node.Name)
node.Status.Conditions = append(node.Status.Conditions, v1.NodeCondition{
Type: nodeConditionType,
Status: v1.ConditionUnknown,
Reason: "NodeStatusNeverUpdated",
Message: "Kubelet never posted node status.",
LastHeartbeatTime: node.CreationTimestamp,
LastTransitionTime: nowTimestamp,
})
} else {
klog.V(4).Infof("node %v hasn't been updated for %+v. Last %v is: %+v",
node.Name, nc.now().Time.Sub(savedNodeHealth.probeTimestamp.Time), nodeConditionType, currentCondition)
if currentCondition.Status != v1.ConditionUnknown {
currentCondition.Status = v1.ConditionUnknown
currentCondition.Reason = "NodeStatusUnknown"
currentCondition.Message = "Kubelet stopped posting node status."
currentCondition.LastTransitionTime = nowTimestamp
}
}
}
_, currentCondition := v1node.GetNodeCondition(&node.Status, v1.NodeReady)
if !apiequality.Semantic.DeepEqual(currentCondition, &observedReadyCondition) {
if _, err = nc.kubeClient.CoreV1().Nodes().UpdateStatus(node); err != nil {
klog.Errorf("Error updating node %s: %v", node.Name, err)
return gracePeriod, observedReadyCondition, currentReadyCondition, err
}
nc.nodeHealthMap[node.Name] = &nodeHealthData{
status: &node.Status,
probeTimestamp: nc.nodeHealthMap[node.Name].probeTimestamp,
readyTransitionTimestamp: nc.now(),
lease: observedLease,
}
return gracePeriod, observedReadyCondition, currentReadyCondition, nil
}
}
return gracePeriod, observedReadyCondition, currentReadyCondition, err
}
func (nc *Controller) handleDisruption(zoneToNodeConditions map[string][]*v1.NodeCondition, nodes []*v1.Node) {
newZoneStates := map[string]ZoneState{}
allAreFullyDisrupted := true
for k, v := range zoneToNodeConditions {
zoneSize.WithLabelValues(k).Set(float64(len(v)))
unhealthy, newState := nc.computeZoneStateFunc(v)
zoneHealth.WithLabelValues(k).Set(float64(100*(len(v)-unhealthy)) / float64(len(v)))
unhealthyNodes.WithLabelValues(k).Set(float64(unhealthy))
if newState != stateFullDisruption {
allAreFullyDisrupted = false
}
newZoneStates[k] = newState
if _, had := nc.zoneStates[k]; !had {
klog.Errorf("Setting initial state for unseen zone: %v", k)
nc.zoneStates[k] = stateInitial
}
}
allWasFullyDisrupted := true
for k, v := range nc.zoneStates {
if _, have := zoneToNodeConditions[k]; !have {
zoneSize.WithLabelValues(k).Set(0)
zoneHealth.WithLabelValues(k).Set(100)
unhealthyNodes.WithLabelValues(k).Set(0)
delete(nc.zoneStates, k)
continue
}
if v != stateFullDisruption {
allWasFullyDisrupted = false
break
}
}
// At least one node was responding in previous pass or in the current pass. Semantics is as follows:
// - if the new state is "partialDisruption" we call a user defined function that returns a new limiter to use,
// - if the new state is "normal" we resume normal operation (go back to default limiter settings),
// - if new state is "fullDisruption" we restore normal eviction rate,
// - unless all zones in the cluster are in "fullDisruption" - in that case we stop all evictions.
if !allAreFullyDisrupted || !allWasFullyDisrupted {
// We're switching to full disruption mode
if allAreFullyDisrupted {
klog.V(0).Info("Controller detected that all Nodes are not-Ready. Entering master disruption mode.")
for i := range nodes {
if nc.useTaintBasedEvictions {
_, err := nc.markNodeAsReachable(nodes[i])
if err != nil {
klog.Errorf("Failed to remove taints from Node %v", nodes[i].Name)
}
} else {
nc.cancelPodEviction(nodes[i])
}
}
// We stop all evictions.
for k := range nc.zoneStates {
if nc.useTaintBasedEvictions {
nc.zoneNoExecuteTainter[k].SwapLimiter(0)
} else {
nc.zonePodEvictor[k].SwapLimiter(0)
}
}
for k := range nc.zoneStates {
nc.zoneStates[k] = stateFullDisruption
}
// All rate limiters are updated, so we can return early here.
return
}
// We're exiting full disruption mode
if allWasFullyDisrupted {
klog.V(0).Info("Controller detected that some Nodes are Ready. Exiting master disruption mode.")
// When exiting disruption mode update probe timestamps on all Nodes.
now := nc.now()
for i := range nodes {
v := nc.nodeHealthMap[nodes[i].Name]
v.probeTimestamp = now
v.readyTransitionTimestamp = now
nc.nodeHealthMap[nodes[i].Name] = v
}
// We reset all rate limiters to settings appropriate for the given state.
for k := range nc.zoneStates {
nc.setLimiterInZone(k, len(zoneToNodeConditions[k]), newZoneStates[k])
nc.zoneStates[k] = newZoneStates[k]
}
return
}
// We know that there's at least one not-fully disrupted so,
// we can use default behavior for rate limiters
for k, v := range nc.zoneStates {
newState := newZoneStates[k]
if v == newState {
continue
}
klog.V(0).Infof("Controller detected that zone %v is now in state %v.", k, newState)
nc.setLimiterInZone(k, len(zoneToNodeConditions[k]), newState)
nc.zoneStates[k] = newState
}
}
}
func (nc *Controller) setLimiterInZone(zone string, zoneSize int, state ZoneState) {
switch state {
case stateNormal:
if nc.useTaintBasedEvictions {
nc.zoneNoExecuteTainter[zone].SwapLimiter(nc.evictionLimiterQPS)
} else {
nc.zonePodEvictor[zone].SwapLimiter(nc.evictionLimiterQPS)
}
case statePartialDisruption:
if nc.useTaintBasedEvictions {
nc.zoneNoExecuteTainter[zone].SwapLimiter(
nc.enterPartialDisruptionFunc(zoneSize))
} else {
nc.zonePodEvictor[zone].SwapLimiter(
nc.enterPartialDisruptionFunc(zoneSize))
}
case stateFullDisruption:
if nc.useTaintBasedEvictions {
nc.zoneNoExecuteTainter[zone].SwapLimiter(
nc.enterFullDisruptionFunc(zoneSize))
} else {
nc.zonePodEvictor[zone].SwapLimiter(
nc.enterFullDisruptionFunc(zoneSize))
}
}
}
// classifyNodes classifies the allNodes to three categories:
// 1. added: the nodes that in 'allNodes', but not in 'knownNodeSet'
// 2. deleted: the nodes that in 'knownNodeSet', but not in 'allNodes'
// 3. newZoneRepresentatives: the nodes that in both 'knownNodeSet' and 'allNodes', but no zone states
func (nc *Controller) classifyNodes(allNodes []*v1.Node) (added, deleted, newZoneRepresentatives []*v1.Node) {
for i := range allNodes {
if _, has := nc.knownNodeSet[allNodes[i].Name]; !has {
added = append(added, allNodes[i])
} else {
// Currently, we only consider new zone as updated.
zone := utilnode.GetZoneKey(allNodes[i])
if _, found := nc.zoneStates[zone]; !found {
newZoneRepresentatives = append(newZoneRepresentatives, allNodes[i])
}
}
}
// If there's a difference between lengths of known Nodes and observed nodes
// we must have removed some Node.
if len(nc.knownNodeSet)+len(added) != len(allNodes) {
knowSetCopy := map[string]*v1.Node{}
for k, v := range nc.knownNodeSet {
knowSetCopy[k] = v
}
for i := range allNodes {
delete(knowSetCopy, allNodes[i].Name)
}
for i := range knowSetCopy {
deleted = append(deleted, knowSetCopy[i])
}
}
return
}
// HealthyQPSFunc returns the default value for cluster eviction rate - we take
// nodeNum for consistency with ReducedQPSFunc.
func (nc *Controller) HealthyQPSFunc(nodeNum int) float32 {
return nc.evictionLimiterQPS
}
// ReducedQPSFunc returns the QPS for when a the cluster is large make
// evictions slower, if they're small stop evictions altogether.
func (nc *Controller) ReducedQPSFunc(nodeNum int) float32 {
if int32(nodeNum) > nc.largeClusterThreshold {
return nc.secondaryEvictionLimiterQPS
}
return 0
}
// addPodEvictorForNewZone checks if new zone appeared, and if so add new evictor.
func (nc *Controller) addPodEvictorForNewZone(node *v1.Node) {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
zone := utilnode.GetZoneKey(node)
if _, found := nc.zoneStates[zone]; !found {
nc.zoneStates[zone] = stateInitial
if !nc.useTaintBasedEvictions {
nc.zonePodEvictor[zone] =
scheduler.NewRateLimitedTimedQueue(
flowcontrol.NewTokenBucketRateLimiter(nc.evictionLimiterQPS, scheduler.EvictionRateLimiterBurst))
} else {
nc.zoneNoExecuteTainter[zone] =
scheduler.NewRateLimitedTimedQueue(
flowcontrol.NewTokenBucketRateLimiter(nc.evictionLimiterQPS, scheduler.EvictionRateLimiterBurst))
}
// Init the metric for the new zone.
klog.Infof("Initializing eviction metric for zone: %v", zone)
evictionsNumber.WithLabelValues(zone).Add(0)
}
}
// cancelPodEviction removes any queued evictions, typically because the node is available again. It
// returns true if an eviction was queued.
func (nc *Controller) cancelPodEviction(node *v1.Node) bool {
zone := utilnode.GetZoneKey(node)
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
wasDeleting := nc.zonePodEvictor[zone].Remove(node.Name)
if wasDeleting {
klog.V(2).Infof("Cancelling pod Eviction on Node: %v", node.Name)
return true
}
return false
}
// evictPods queues an eviction for the provided node name, and returns false if the node is already
// queued for eviction.
func (nc *Controller) evictPods(node *v1.Node) bool {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
return nc.zonePodEvictor[utilnode.GetZoneKey(node)].Add(node.Name, string(node.UID))
}
func (nc *Controller) markNodeForTainting(node *v1.Node) bool {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
return nc.zoneNoExecuteTainter[utilnode.GetZoneKey(node)].Add(node.Name, string(node.UID))
}
func (nc *Controller) markNodeAsReachable(node *v1.Node) (bool, error) {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
err := controller.RemoveTaintOffNode(nc.kubeClient, node.Name, node, UnreachableTaintTemplate)
if err != nil {
klog.Errorf("Failed to remove taint from node %v: %v", node.Name, err)
return false, err
}
err = controller.RemoveTaintOffNode(nc.kubeClient, node.Name, node, NotReadyTaintTemplate)
if err != nil {
klog.Errorf("Failed to remove taint from node %v: %v", node.Name, err)
return false, err
}
return nc.zoneNoExecuteTainter[utilnode.GetZoneKey(node)].Remove(node.Name), nil
}
func (nc *Controller) markNodeAsNotShutdown(node *v1.Node) error {
nc.evictorLock.Lock()
defer nc.evictorLock.Unlock()
err := controller.RemoveTaintOffNode(nc.kubeClient, node.Name, node, controller.ShutdownTaint)
if err != nil {
klog.Errorf("Failed to remove taint from node %v: %v", node.Name, err)
return err
}
return nil
}
// ComputeZoneState returns a slice of NodeReadyConditions for all Nodes in a given zone.
// The zone is considered:
// - fullyDisrupted if there're no Ready Nodes,
// - partiallyDisrupted if at least than nc.unhealthyZoneThreshold percent of Nodes are not Ready,
// - normal otherwise
func (nc *Controller) ComputeZoneState(nodeReadyConditions []*v1.NodeCondition) (int, ZoneState) {
readyNodes := 0
notReadyNodes := 0
for i := range nodeReadyConditions {
if nodeReadyConditions[i] != nil && nodeReadyConditions[i].Status == v1.ConditionTrue {
readyNodes++
} else {
notReadyNodes++
}
}
switch {
case readyNodes == 0 && notReadyNodes > 0:
return notReadyNodes, stateFullDisruption
case notReadyNodes > 2 && float32(notReadyNodes)/float32(notReadyNodes+readyNodes) >= nc.unhealthyZoneThreshold:
return notReadyNodes, statePartialDisruption
default:
return notReadyNodes, stateNormal
}
}
func hash(val string, max int) int {
hasher := fnv.New32a()
io.WriteString(hasher, val)
return int(hasher.Sum32()) % max
}