blob: 896541236532e6f3e4363d34976f4267acca1b00 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import print_function
import os
import sys
import ssl
import yaml
import operator
from datetime import datetime
from glob import glob
from getpass import getpass
import numpy as np
# Need these lines to run RCMES through SSH without X11
import matplotlib
import ocw.utils as utils
import ocw.dataset_processor as dsp
from ocw.dataset import Bounds
from ocw.dataset_loader import DatasetLoader
from metrics_and_plots import *
def load_datasets_from_config(extra_opts, *loader_opts):
Generic dataset loading function.
for opt in loader_opts:
loader_name = opt['loader_name']
if loader_name == 'esgf':
if extra_opts['password'] is None:
extra_opts['username'] = raw_input('Enter your ESGF OpenID:\n')
extra_opts['password'] = getpass(
prompt='Enter your ESGF password:\n')
opt['esgf_username'] = extra_opts['username']
opt['esgf_password'] = extra_opts['password']
elif loader_name == 'rcmed':
opt['min_lat'] = extra_opts['min_lat']
opt['max_lat'] = extra_opts['max_lat']
opt['min_lon'] = extra_opts['min_lon']
opt['max_lon'] = extra_opts['max_lon']
opt['start_time'] = extra_opts['start_time']
opt['end_time'] = extra_opts['end_time']
loader = DatasetLoader(*loader_opts)
return loader.datasets
if hasattr(ssl, '_create_unverified_context'):
ssl._create_default_https_context = ssl._create_unverified_context
config_file = str(sys.argv[1])
print('Reading the configuration file {}'.format(config_file))
config = yaml.load(open(config_file))
time_info = config['time']
temporal_resolution = time_info['temporal_resolution']
# Read time info
maximum_overlap_period = time_info.get('maximum_overlap_period', False)
if not maximum_overlap_period:
start_time = datetime.strptime(time_info['start_time'].strftime('%Y%m%d'),'%Y%m%d')
end_time = datetime.strptime(time_info['end_time'].strftime('%Y%m%d'),'%Y%m%d')
# These values will be determined after datasets are loaded
start_time, end_time = None, None
# Read space info
space_info = config['space']
if not 'boundary_type' in space_info:
min_lat = space_info['min_lat']
max_lat = space_info['max_lat']
min_lon = space_info['min_lon']
max_lon = space_info['max_lon']
domain = space_info['boundary_type']
if 'CORDEX' in domain:
domain = domain.replace('CORDEX', '').lower()
domain = domain.strip()
min_lat, max_lat, min_lon, max_lon = utils.CORDEX_boundary(domain)
# Additional arguments for the DatasetLoader
extra_opts = {'min_lat': min_lat, 'max_lat': max_lat, 'min_lon': min_lon,
'max_lon': max_lon, 'start_time': start_time,
'end_time': end_time, 'username': None, 'password': None}
# Get the dataset loader options
data_info = config['datasets']
# Extract info we don't want to put into the loader config
# Multiplying Factor to scale obs by. Currently only supported for reference
# (first) dataset. We should instead make this a parameter for each
# loader and Dataset objects.
fact = data_info[0].pop('multiplying_factor', 1)
""" Step 1: Load the datasets """
print('Loading datasets:\n{}'.format(data_info))
datasets = load_datasets_from_config(extra_opts, *data_info)
multiplying_factor = np.ones(len(datasets))
multiplying_factor[0] = fact
names = [ for dataset in datasets]
for i, dataset in enumerate(datasets):
res = dataset.temporal_resolution()
if res == 'daily' or res == 'monthly':
datasets[i] = dsp.normalize_dataset_datetimes(dataset, res)
if multiplying_factor[i] != 1:
datasets[i].values *= multiplying_factor[i]
""" Step 2: Subset the data for temporal and spatial domain """
# Create a Bounds object to use for subsetting
if 'adjust_model_years_for_climatology_calculation' in time_info:
if time_info['adjust_model_years_for_climatology_calculation']:
datasets = utils.adjust_model_years_for_climatology_calculation(datasets)
if maximum_overlap_period:
start_time, end_time = utils.get_temporal_overlap(datasets)
print('Maximum overlap period')
print('start_time: {}'.format(start_time))
print('end_time: {}'.format(end_time))
if temporal_resolution == 'monthly' and !=1:
end_time = end_time.replace(day=1)
for i, dataset in enumerate(datasets):
min_lat = np.max([min_lat, dataset.lats.min()])
max_lat = np.min([max_lat, dataset.lats.max()])
min_lon = np.max([min_lon, dataset.lons.min()])
max_lon = np.min([max_lon, dataset.lons.max()])
if not 'boundary_type' in space_info:
bounds = Bounds(lat_min=min_lat,
bounds = Bounds(boundary_type=space_info['boundary_type'],
for i, dataset in enumerate(datasets):
datasets[i] = dsp.subset(dataset, bounds)
if dataset.temporal_resolution() != temporal_resolution:
datasets[i] = dsp.temporal_rebin(datasets[i], temporal_resolution)
# Temporally subset both observation and model datasets
# for the user specified season
month_start = time_info['month_start']
month_end = time_info['month_end']
average_each_year = time_info['average_each_year']
# For now we will treat the first listed dataset as the reference dataset for
# evaluation purposes.
for i, dataset in enumerate(datasets):
datasets[i] = dsp.temporal_subset(dataset, month_start, month_end,
reference_dataset = datasets[0]
target_datasets = datasets[1:]
reference_name = names[0]
target_names = names[1:]
# generate grid points for regridding
if config['regrid']['regrid_on_reference']:
new_lat = reference_dataset.lats
new_lon = reference_dataset.lons
delta_lat = config['regrid']['regrid_dlat']
delta_lon = config['regrid']['regrid_dlon']
nlat = (max_lat - min_lat)/delta_lat+1
nlon = (max_lon - min_lon)/delta_lon+1
new_lat = np.linspace(min_lat, max_lat, nlat)
new_lon = np.linspace(min_lon, max_lon, nlon)
# Get flag for boundary checking for regridding. By default, this is set to True
# since the main intent of this program is to evaluate RCMs. However, it can be
# used for GCMs in which case it should be set to False to save time.
boundary_check = config['regrid'].get('boundary_check', True)
# number of target datasets (usually models, but can also be obs / reanalysis)
ntarget = len(target_datasets)
print('Dataset loading completed')
print('Reference data: {}'.format(reference_name))
print('Number of target datasets: {}'.format(ntarget))
for target_name in target_names:
""" Step 3: Spatial regriding of the datasets """
print('Regridding datasets: {}'.format(config['regrid']))
if not config['regrid']['regrid_on_reference']:
reference_dataset = dsp.spatial_regrid(reference_dataset, new_lat, new_lon)
print('Reference dataset has been regridded')
for i, dataset in enumerate(target_datasets):
target_datasets[i] = dsp.spatial_regrid(dataset, new_lat, new_lon,
print('{} has been regridded'.format(target_names[i]))
print('Propagating missing data information')
datasets = dsp.mask_missing_data([reference_dataset]+target_datasets)
reference_dataset = datasets[0]
target_datasets = datasets[1:]
""" Step 4: Checking and converting variable units """
print('Checking and converting variable units')
reference_dataset = dsp.variable_unit_conversion(reference_dataset)
for i, dataset in enumerate(target_datasets):
target_datasets[i] = dsp.variable_unit_conversion(dataset)
print('Generating multi-model ensemble')
if len(target_datasets) >= 2.:
""" Step 5: Generate subregion average and standard deviation """
if config['use_subregions']:
# sort the subregion by region names and make a list
subregions= sorted(config['subregions'].items(),key=operator.itemgetter(0))
# number of subregions
nsubregion = len(subregions)
print('Calculating spatial averages and standard deviations of {} subregions'
reference_subregion_mean, reference_subregion_std, subregion_array = (
utils.calc_subregion_area_mean_and_std([reference_dataset], subregions))
target_subregion_mean, target_subregion_std, subregion_array = (
utils.calc_subregion_area_mean_and_std(target_datasets, subregions))
""" Step 6: Write a netCDF file """
workdir = config['workdir']
if workdir[-1] != '/':
workdir = workdir+'/'
print('Writing a netcdf file: ',workdir+config['output_netcdf_filename'])
if not os.path.exists(workdir):
os.system("mkdir -p "+workdir)
if config['use_subregions']:
reference_dataset, reference_name, target_datasets, target_names,
subregions=subregions, subregion_array=subregion_array,
reference_dataset, reference_name, target_datasets,
""" Step 7: Calculate metrics and draw plots """
nmetrics = config['number_of_metrics_and_plots']
if config['use_subregions']:
Map_plot_subregion(subregions, reference_dataset, workdir)
if nmetrics > 0:
print('Calculating metrics and generating plots')
for imetric in np.arange(nmetrics)+1:
metrics_name = config['metrics'+'%1d' %imetric]
plot_info = config['plots'+'%1d' %imetric]
file_name = workdir+plot_info['file_name']
print('metrics {0}/{1}: {2}'.format(imetric, nmetrics, metrics_name))
default_shape = (int(np.ceil(np.sqrt(ntarget + 2))),
int(np.ceil(np.sqrt(ntarget + 2))))
if metrics_name == 'Map_plot_bias_of_multiyear_climatology':
row, column = plot_info.get('subplots_array', default_shape)
if 'map_projection' in plot_info.keys():
reference_dataset, reference_name, target_datasets, target_names,
file_name, row, column,
reference_dataset, reference_name, target_datasets, target_names,
file_name, row, column)
elif metrics_name == 'Taylor_diagram_spatial_pattern_of_multiyear_climatology':
reference_dataset, reference_name, target_datasets, target_names,
elif config['use_subregions']:
if (metrics_name == 'Timeseries_plot_subregion_interannual_variability'
and average_each_year):
row, column = plot_info.get('subplots_array', default_shape)
reference_subregion_mean, reference_name, target_subregion_mean,
target_names, False, file_name, row, column,
for i in np.arange(target_subregion_mean.shape[1])])
if (metrics_name == 'Timeseries_plot_subregion_annual_cycle'
and not average_each_year and month_start==1 and month_end==12):
row, column = plot_info.get('subplots_array', (1, 1))
reference_subregion_mean, reference_name,
target_subregion_mean, target_names, True,
file_name, row, column,
if (metrics_name == 'Portrait_diagram_subregion_interannual_variability'
and average_each_year):
Portrait_diagram_subregion(reference_subregion_mean, reference_name,
target_subregion_mean, target_names,
False, file_name)
if (metrics_name == 'Portrait_diagram_subregion_annual_cycle'
and not average_each_year and month_start==1 and month_end==12):
Portrait_diagram_subregion(reference_subregion_mean, reference_name,
target_subregion_mean, target_names,
True, file_name)
print('please check the currently supported metrics')