blob: 34a8bbd1958a2136816ae62b83bb1aea82a7821d [file] [log] [blame] [view]
# Minio to Kafka
First of all run the command to start Minio
```shell script
docker run -e MINIO_ROOT_USER=minio -e MINIO_ROOT_PASSWORD=miniostorage --net=host minio/minio server /data --console-address ":9001"
```
In the routes.yaml file, set correctly the Minio credentials for your bucket.
Download the minio client too:
```shell script
wget https://dl.min.io/client/mc/release/linux-amd64/mc
chmod +x mc
sudo mv mc /usr/local/bin
```
Now we need to set up an alias for our bucket and login
```shell script
mc alias set minio http://127.0.0.1:9000 minio miniostorage
mc mb minio/ckc
```
Now we can use the minio-bulk.sh script
```shell script
./minio-bulk.sh -f msg1.txt -b ckc -n 10000
```
Also you'll need to run a Kafka cluster to point to. In this case you could use an ansible role like https://github.com/oscerd/kafka-ansible-role
And set up a file deploy.yaml with the following content:
```yaml
- name: role kafka
hosts: localhost
remote_user: user
roles:
- role: kafka-ansible-role
kafka_version: 2.8.0
path_dir: /home/user/
unarchive_dest_dir: /home/user/kafka/demo/
start_kafka: true
```
and then run
```shell script
ansible-playbook -v deploy.yaml
```
This should start a Kafka instance for you, on your local machine.
build:
```shell script
./mvnw clean package
```
If you want to have JFR enable from the beginning:
build:
```shell script
./mvnw clean package -Pjfr
```
At this point you're able to run the example:
docker:
```shell script
docker run --rm -ti \
-v $PWD/data:/etc/camel:Z \
-e CAMEL_K_CONF=/etc/camel/application.properties \
--network="host" \
quay.io/oscerd/minio-kafka:1.0-SNAPSHOT-jvm
```
## Enabling JFR
docker:
```shell script
docker run --rm -ti \
-v $PWD/data:/etc/camel:Z \
-v $PWD/jfr:/work/jfr:Z \
-e CAMEL_K_CONF=/etc/camel/application.properties \
--network="host" \
quay.io/oscerd/minio-kafka:1.0-SNAPSHOT-jvm
```
Now you can start JFR with the following command
```
docker exec -it <container_id> jcmd 1 JFR.start name=Test settings=jfr/settings_for_heap.jfc duration=5m filename=jfr/output.jfr
```
and check the status
```
docker exec -it <container_id> jcmd 1 JFR.check
```
## Enabling Async Profiler
docker:
```shell script
docker run --rm -ti \
-v $PWD/data:/etc/camel:Z \
-v async_profiler_path:/work/async-profiler:Z \
-e CAMEL_K_CONF=/etc/camel/application.properties \
--network="host" \
quay.io/oscerd/minio-kafka:1.0-SNAPSHOT-jvm
```
Where async profiler path is the path of your async profiler on your host machine.
Now you can start Async Profiler with the following command
```
docker exec -it <container_id> /work/async-profiler/profiler.sh -e alloc -d 30 -f /work/async-profiler/alloc_profile.html 1
```
This command while create an allocation flamegraph for the duration of 30 second of the running application.
The privileged option for running the docker container is the fastest way to have perf events syscall enabled.
If you don't want to use privileged approach, you can have a look at the basic configuration of async profiler (https://github.com/jvm-profiling-tools/async-profiler/wiki/Basic-Usage)
## Tuning Container
You could also modify the resources of your container with memory and cpu defined while running it
docker:
```shell script
docker run --rm -ti \
-v $PWD/data:/etc/camel:Z \
-v $PWD/jfr:/work/jfr:Z \
-e CAMEL_K_CONF=/etc/camel/application.properties \
--network="host" \
-m 128m \
--cpu-quota="25000" \
quay.io/oscerd/minio-kafka:1.0-SNAPSHOT-jvm
```
In this case we are allocating 128 Mb Memory to the container and 0.25% cpus.
## HEAP Sizing
In the pom you can also set a different Heap Size. The default is 64 Mb.