blob: 9d4eb476036e95b76276b39eb13f6ae2cda2cdac [file] [log] [blame] [view]
<!--
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->
# How to run a python nexmark benchmark
## Batch Mode
For batch mode, a file needs to be generated first by running java suite and writing events to a file.
### Direct Runner
```shell script
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:direct-java" \
-Pnexmark.args="--query=0 --runner=DirectRunner --numEvents=100000 --manageResources=false --monitorJobs=true --enforceEncodability=true --enforceImmutability=true --generateEventFilePathPrefix=/tmp/eventfile"
./gradlew :sdks:python:apache_beam:testing:benchmarks:nexmark:run \
-Pnexmark.args="--query=0 --num_events=100000 --runner=DirectRunner --input=/tmp/eventfile\*"
```
### Dataflow Runner
```shell script
RUN_DATA=$(uuidgen)
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:direct-java" \
-Pnexmark.args="--query=0 --runner=DirectRunner --numEvents=100000 --manageResources=false --monitorJobs=true --enforceEncodability=true --enforceImmutability=true --generateEventFilePathPrefix=gs://temp-storage-for-perf-tests/nexmark/eventfile/$RUN_DATA"
./gradlew :sdks:python:apache_beam:testing:benchmarks:nexmark:run \
-Pnexmark.args="--query=0 --num_events=1000000 --runner=DataflowRunner --project=apache-beam-testing --region=us-central1 --temp_location=gs://temp-storage-for-perf-tests/nexmark/PythonQuery0/ --staging_location=gs://temp-storage-for-perf-tests/nexmark/PythonQuery0/ --input=gs://temp-storage-for-perf-tests/nexmark/eventfile/$RUN_DATA\*"
```
## Streaming mode
First generate and publish events to pubsub using java nexmark suite, exmaple:
```shell script
./gradlew :sdks:java:testing:nexmark:run \
-Pnexmark.runner=":runners:google-cloud-dataflow-java"
-Pnexmark.args=" --runner=DataflowRunner --suite=SMOKE --streamTimeout=60 --query=0 --streaming=true --project=apache-beam-testing --region=YOUR_REGION --workerMachineType=n1-highmem-8 --gcpTempLocation=YOUR_TEMP_LOCATION --stagingLocation=YOUR_STAGING_LOCATION --sourceType=PUBSUB --pubSubMode=PUBLISH_ONLY --pubsubTopic=YOUR_TOPIC_NAME --resourceNameMode=VERBATIM --manageResources=false --monitorJobs=false --numEventGenerators=64 --numWorkers=16 --maxNumWorkers=16 --firstEventRate=50000 --nextEventRate=50000 --isRateLimited=true --avgPersonByteSize=500 --avgAuctionByteSize=500 --avgBidByteSize=500 --probDelayedEvent=0.000001 --occasionalDelaySec=60 --numEvents=3000000 --experiments=enable_custom_pubsub_sink --pubsubMessageSerializationMethod=TO_STRING"
```
### Direct Runner
```shell script
python nexmark_launcher.py --query 5 --num_events 3000000 --streaming --runner DirectRunner --topic_name YOUR_TOPIC_NAME --subscription_name YOUR_SUB_NAME --project YOUR_PROJECT_NAME --region YOUR_REGION
```
### Dataflow Runner
```shell script
python nexmark_launcher.py --query 5 --num_events 3000000 --streaming --runner DataflowRunner --num_workers 16 --machine_type n1-highmem-8 --topic_name YOUR_TOPIC_NAME --subscription_name YOUR_SUB_NAME --project YOUR_PROJECT_NAME --region YOUR_REGION --temp_location YOUR_TEMP_LOCATION --staging_location YOUR_STAGING_LOCATION --sdk_location YOUR_SDK_LOCATION
```