Prompt: What does this code do?
class BigtableOptions(PipelineOptions): @classmethod def _add_argparse_args(cls, parser): parser.add_argument( '--project_id', required=True, help='Project ID' ) parser.add_argument( '--instance_id', default="beam-test", help='Cloud Bigtable instance ID' ) parser.add_argument( '--table_id', default="your-test-table", help='Cloud Bigtable table ID' ) options = BigtableOptions() with beam.Pipeline(options=options) as p: output = (p | "Read from Bigtable" >> ReadFromBigtable( project_id=options.project_id, instance_id=options.instance_id, table_id=options.table_id ) | "Extract cells" >> beam.Map(lambda row: row._cells) | "Log Data" >> Map(logging.info))
Response: This code uses the Apache Beam BigtableIO connector to read data from a Bigtable table table_id in a Bigtable instance instance_id.
The BigtableOptions class defines the command-line arguments project_id, ‘instance_id’, and table_id, which are used to configure the ReadFromBigtable transform. These arguments are parsed from the command line using pipeline options.
The ReadFromBigtable transform returns a PCollection of PartialRowData objects, each representing a Bigtable row. For more information about this row object, see PartialRowData (row_key).
The Apache Beam pipeline extracts the data from a Bigtable row and logs it to the console.
For more information about how to use the BigtableIO connector with the Python SDK for Apache Beam, see BigtableIO module.