blob: d627001bcb8260505cb4664ab1e6c47f2b1932b0 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""A pipeline that uses RunInference API to perform image classification."""
import argparse
import io
import logging
import os
from typing import Iterator
from typing import Optional
from typing import Tuple
import apache_beam as beam
import torch
from apache_beam.io.filesystems import FileSystems
from apache_beam.ml.inference.base import KeyedModelHandler
from apache_beam.ml.inference.base import PredictionResult
from apache_beam.ml.inference.base import RunInference
from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerTensor
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.runners.runner import PipelineResult
from PIL import Image
from torchvision import models
from torchvision import transforms
def read_image(image_file_name: str,
path_to_dir: Optional[str] = None) -> Tuple[str, Image.Image]:
if path_to_dir is not None:
image_file_name = os.path.join(path_to_dir, image_file_name)
with FileSystems().open(image_file_name, 'r') as file:
data = Image.open(io.BytesIO(file.read())).convert('RGB')
return image_file_name, data
def preprocess_image(data: Image.Image) -> torch.Tensor:
image_size = (224, 224)
# Pre-trained PyTorch models expect input images normalized with the
# below values (see: https://pytorch.org/vision/stable/models.html)
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
normalize,
])
return transform(data)
def filter_empty_lines(text: str) -> Iterator[str]:
if len(text.strip()) > 0:
yield text
def parse_known_args(argv):
"""Parses args for the workflow."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--input',
dest='input',
required=True,
help='Path to the text file containing image names.')
parser.add_argument(
'--output',
dest='output',
required=True,
help='Path where to save output predictions.'
' text file.')
parser.add_argument(
'--model_state_dict_path',
dest='model_state_dict_path',
required=True,
help="Path to the model's state_dict.")
parser.add_argument(
'--images_dir',
default=None,
help='Path to the directory where images are stored.'
'Not required if image names in the input file have absolute path.')
return parser.parse_known_args(argv)
def run(
argv=None,
model_class=None,
model_params=None,
save_main_session=True,
device='CPU',
test_pipeline=None) -> PipelineResult:
"""
Args:
argv: Command line arguments defined for this example.
model_class: Reference to the class definition of the model.
model_params: Parameters passed to the constructor of the model_class.
These will be used to instantiate the model object in the
RunInference API.
save_main_session: Used for internal testing.
device: Device to be used on the Runner. Choices are (CPU, GPU).
test_pipeline: Used for internal testing.
"""
known_args, pipeline_args = parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
if not model_class:
# default model class will be mobilenet with pretrained weights.
model_class = models.mobilenet_v2
model_params = {'num_classes': 1000}
def preprocess(image_name: str) -> Tuple[str, torch.Tensor]:
image_name, image = read_image(
image_file_name=image_name,
path_to_dir=known_args.images_dir)
return (image_name, preprocess_image(image))
def postprocess(element: Tuple[str, PredictionResult]) -> str:
filename, prediction_result = element
prediction = torch.argmax(prediction_result.inference, dim=0)
return filename + ',' + str(prediction.item())
# In this example we pass keyed inputs to RunInference transform.
# Therefore, we use KeyedModelHandler wrapper over PytorchModelHandler.
model_handler = KeyedModelHandler(
PytorchModelHandlerTensor(
state_dict_path=known_args.model_state_dict_path,
model_class=model_class,
model_params=model_params,
device=device,
min_batch_size=10,
max_batch_size=100)).with_preprocess_fn(
preprocess).with_postprocess_fn(postprocess)
pipeline = test_pipeline
if not test_pipeline:
pipeline = beam.Pipeline(options=pipeline_options)
filename_value_pair = (
pipeline
| 'ReadImageNames' >> beam.io.ReadFromText(known_args.input)
| 'FilterEmptyLines' >> beam.ParDo(filter_empty_lines))
predictions = (
filename_value_pair
| 'PyTorchRunInference' >> RunInference(model_handler))
predictions | "WriteOutputToGCS" >> beam.io.WriteToText( # pylint: disable=expression-not-assigned
known_args.output,
shard_name_template='',
append_trailing_newlines=True)
result = pipeline.run()
result.wait_until_finish()
return result
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()