blob: 264d7f6ece5086c25332cf70edc6f7c54695d44f [file] [log] [blame] [view]
<!---
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
-->
# MATLAB Interface to Apache Arrow
## Status
> **Warning** The MATLAB interface is under active development and should be considered experimental.
This is a very early stage MATLAB interface to the Apache Arrow C++ libraries.
Currently, the MATLAB interface supports:
1. Converting between a subset of Arrow `Array` types and MATLAB array types (see table below)
2. Converting between MATLAB `table`s and `arrow.tabular.RecordBatch`s
3. Creating Arrow `Field`s, `Schema`s, and `Type`s
4. Reading and writing Feather V1 files
Supported `arrow.array.Array` types are included in the table below.
**NOTE**: All Arrow `Array` classes listed below are part of the `arrow.array` package (e.g. `arrow.array.Float64Array`).
| MATLAB Array Type | Arrow Array Type |
| ----------------- | ---------------- |
| `uint8` | `UInt8Array` |
| `uint16` | `UInt16Array` |
| `uint32` | `UInt32Array` |
| `uint64` | `UInt64Array` |
| `int8` | `Int8Array` |
| `int16` | `Int16Array` |
| `int32` | `Int32Array` |
| `int64` | `Int64Array` |
| `single` | `Float32Array` |
| `double` | `Float64Array` |
| `logical` | `BooleanArray` |
| `string` | `StringArray` |
| `datetime` | `TimestampArray` |
| `datetime` | `Date32Array` |
| `datetime` | `Date64Array` |
| `duration` | `Time32Array` |
| `duration` | `Time64Array` |
| `cell` | `ListArray` |
| `table` | `StructArray` |
## Prerequisites
To build the MATLAB Interface to Apache Arrow from source, the following software must be installed on the target machine:
1. [MATLAB](https://www.mathworks.com/products/get-matlab.html)
2. [CMake](https://cmake.org/cmake/help/latest/)
3. C++ compiler which supports C++20 (e.g. [`gcc`](https://gcc.gnu.org/) on Linux, [`Xcode`](https://developer.apple.com/xcode/) on macOS, or [`Visual Studio`](https://visualstudio.microsoft.com/) on Windows)
4. [Git](https://git-scm.com/)
## Setup
To set up a local working copy of the source code, start by cloning the [`apache/arrow`](https://github.com/apache/arrow) GitHub repository using [Git](https://git-scm.com/):
```console
$ git clone https://github.com/apache/arrow.git
```
After cloning, change the working directory to the `matlab` subdirectory:
```console
$ cd arrow/matlab
```
## Build
To build the MATLAB interface, use [CMake](https://cmake.org/cmake/help/latest/):
```console
$ cmake -S . -B build
$ cmake --build build --config Release
```
## Install
To install the MATLAB interface to the default software installation location for the target machine (e.g. `/usr/local` on Linux or `C:\Program Files` on Windows), pass the `--target install` flag to CMake.
```console
$ cmake --build build --config Release --target install
```
As part of the install step, the installation directory is added to the [MATLAB Search Path](https://mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html).
**Note**: This step may fail if the current user is lacking necessary filesystem permissions. If the install step fails, the installation directory can be manually added to the MATLAB Search Path using the [`addpath`](https://www.mathworks.com/help/matlab/ref/addpath.html) command.
## Test
To run the MATLAB tests, start MATLAB in the `arrow/matlab` directory and call the [`runtests`](https://mathworks.com/help/matlab/ref/runtests.html) command on the `test` directory with `IncludeSubFolders=true`:
``` matlab
>> runtests("test", IncludeSubFolders=true);
```
Refer to [Testing Guidelines](doc/testing_guidelines_for_the_matlab_interface_to_apache_arrow.md) for more information.
## Usage
Included below are some example code snippets that illustrate how to use the MATLAB interface.
### Arrow `Array` classes (i.e. `arrow.array.<Array>`)
#### Create an Arrow `Float64Array` from a MATLAB `double` array
```matlab
>> matlabArray = double([1, 2, 3])
matlabArray =
1 2 3
>> arrowArray = arrow.array(matlabArray)
arrowArray =
Float64Array with 3 elements and 0 null values:
1 | 2 | 3
```
#### Create a MATLAB `logical` array from an Arrow `BooleanArray`
```matlab
>> arrowArray = arrow.array([true, false, true])
arrowArray =
BooleanArray with 3 elements and 0 null values:
true | false | true
>> matlabArray = toMATLAB(arrowArray)
matlabArray =
3×1 logical array
1
0
1
```
#### Specify `Null` Values when constructing an `arrow.array.Int8Array`
```matlab
>> matlabArray = int8([122, -1, 456, -10, 789])
matlabArray =
1×5 int8 row vector
122 -1 127 -10 127
% Treat all negative array elements as Null
>> validElements = matlabArray > 0
validElements =
1×5 logical array
1 0 1 0 1
% Specify which values are Null/Valid by supplying a logical validity "mask"
>> arrowArray = arrow.array(matlabArray, Valid=validElements)
arrowArray =
Int8Array with 5 elements and 2 null values:
122 | null | 127 | null | 127
```
### Arrow `RecordBatch` class
#### Create an Arrow `RecordBatch` from a MATLAB `table`
```matlab
>> matlabTable = table(["A"; "B"; "C"], [1; 2; 3], [true; false; true])
matlabTable =
3x3 table
Var1 Var2 Var3
____ ____ _____
"A" 1 true
"B" 2 false
"C" 3 true
>> arrowRecordBatch = arrow.recordBatch(matlabTable)
arrowRecordBatch =
Arrow RecordBatch with 3 rows and 3 columns:
Schema:
Var1: String | Var2: Float64 | Var3: Boolean
First Row:
"A" | 1 | true
```
#### Create a MATLAB `table` from an Arrow `RecordBatch`
```matlab
>> arrowRecordBatch
arrowRecordBatch =
Arrow RecordBatch with 3 rows and 3 columns:
Schema:
Var1: String | Var2: Float64 | Var3: Boolean
First Row:
"A" | 1 | true
>> matlabTable = table(arrowRecordBatch)
matlabTable =
3x3 table
Var1 Var2 Var3
____ ____ _____
"A" 1 true
"B" 2 false
"C" 3 true
```
#### Create an Arrow `RecordBatch` from multiple Arrow `Array`s
```matlab
>> stringArray = arrow.array(["A", "B", "C"])
stringArray =
StringArray with 3 elements and 0 null values:
"A" | "B" | "C"
>> timestampArray = arrow.array([datetime(1997, 01, 01), datetime(1998, 01, 01), datetime(1999, 01, 01)])
timestampArray =
TimestampArray with 3 elements and 0 null values:
1997-01-01 00:00:00.000000 | 1998-01-01 00:00:00.000000 | 1999-01-01 00:00:00.000000
>> booleanArray = arrow.array([true, false, true])
booleanArray =
BooleanArray with 3 elements and 0 null values:
true | false | true
>> arrowRecordBatch = arrow.tabular.RecordBatch.fromArrays(stringArray, timestampArray, booleanArray)
arrowRecordBatch =
Arrow RecordBatch with 3 rows and 3 columns:
Schema:
Column1: String | Column2: Timestamp | Column3: Boolean
First Row:
"A" | 1997-01-01 00:00:00.000000 | true
```
#### Extract a column from a `RecordBatch` by index
```matlab
>> arrowRecordBatch = arrow.tabular.RecordBatch.fromArrays(stringArray, timestampArray, booleanArray)
arrowRecordBatch =
Arrow RecordBatch with 3 rows and 3 columns:
Schema:
Column1: String | Column2: Timestamp | Column3: Boolean
First Row:
"A" | 1997-01-01 00:00:00.000000 | true
>> timestampArray = arrowRecordBatch.column(2)
timestampArray =
TimestampArray with 3 elements and 0 null values:
1997-01-01 00:00:00.000000 | 1998-01-01 00:00:00.000000 | 1999-01-01 00:00:00.000000
```
### Arrow `Type` classes (i.e. `arrow.type.<Type>`)
#### Create an Arrow `Int8Type` object
```matlab
>> type = arrow.int8()
type =
Int8Type with properties:
ID: Int8
```
#### Create an Arrow `TimestampType` object with a specific `TimeUnit` and `TimeZone`
```matlab
>> type = arrow.timestamp(TimeUnit="Second", TimeZone="Asia/Kolkata")
type =
TimestampType with properties:
ID: Timestamp
TimeUnit: Second
TimeZone: "Asia/Kolkata"
```
#### Get the type enumeration `ID` for an Arrow `Type` object
```matlab
>> type.ID
ans =
ID enumeration
Timestamp
>> type = arrow.string()
type =
StringType with properties:
ID: String
>> type.ID
ans =
ID enumeration
String
```
### Arrow `Field` class
#### Create an Arrow `Field` with type `Int8Type`
```matlab
>> field = arrow.field("Number", arrow.int8())
field =
Field with properties:
Name: "Number"
Type: [1x1 arrow.type.Int8Type]
>> field.Name
ans =
"Number"
>> field.Type
ans =
Int8Type with properties:
ID: Int8
```
#### Create an Arrow `Field` with type `StringType`
```matlab
>> field = arrow.field("Letter", arrow.string())
field =
Field with properties:
Name: "Letter"
Type: [1x1 arrow.type.StringType]
>> field.Name
ans =
"Letter"
>> field.Type
ans =
StringType with properties:
ID: String
```
#### Extract an Arrow `Field` from an Arrow `Schema` by index
```matlab
>> arrowSchema
arrowSchema =
Arrow Schema with 2 fields:
Letter: String | Number: Int8
% Specify the field to extract by its index (i.e. 2)
>> field = arrowSchema.field(2)
field =
Field with properties:
Name: "Number"
Type: [1x1 arrow.type.Int8Type]
```
#### Extract an Arrow `Field` from an Arrow `Schema` by name
```matlab
>> arrowSchema
arrowSchema =
Arrow Schema with 2 fields:
Letter: String | Number: Int8
% Specify the field to extract by its name (i.e. "Letter")
>> field = arrowSchema.field("Letter")
field =
Field with properties:
Name: "Letter"
Type: [1x1 arrow.type.StringType]
```
### Arrow `Schema` class
#### Create an Arrow `Schema` from multiple Arrow `Field`s
```matlab
>> letter = arrow.field("Letter", arrow.string())
letter =
Field with properties:
Name: "Letter"
Type: [1x1 arrow.type.StringType]
>> number = arrow.field("Number", arrow.int8())
number =
Field with properties:
Name: "Number"
Type: [1x1 arrow.type.Int8Type]
>> schema = arrow.schema([letter, number])
schema =
Arrow Schema with 2 fields:
Letter: String | Number: Int8
```
#### Get the `Schema` of an Arrow `RecordBatch`
```matlab
>> matlabTable = table(["A"; "B"; "C"], [1; 2; 3], VariableNames=["Letter", "Number"])
matlabTable =
3x2 table
Letter Number
______ ______
"A" 1
"B" 2
"C" 3
>> arrowRecordBatch = arrow.recordBatch(matlabTable)
arrowRecordBatch =
Arrow RecordBatch with 3 rows and 2 columns:
Schema:
Letter: String | Number: Float64
First Row:
"A" | 1
>> arrowSchema = arrowRecordBatch.Schema
arrowSchema =
Arrow Schema with 2 fields:
Letter: String | Number: Float64
```
### Feather V1
#### Write a MATLAB table to a Feather V1 file
``` matlab
>> t = table(["A"; "B"; "C"], [1; 2; 3], [true; false; true])
t =
3×3 table
Var1 Var2 Var3
____ ____ _____
"A" 1 true
"B" 2 false
"C" 3 true
>> filename = "table.feather";
>> featherwrite(filename, t)
```
#### Read a Feather V1 file into a MATLAB table
``` matlab
>> filename = "table.feather";
>> t = featherread(filename)
t =
3×3 table
Var1 Var2 Var3
____ ____ _____
"A" 1 true
"B" 2 false
"C" 3 true
```