| <!--- |
| Licensed to the Apache Software Foundation (ASF) under one |
| or more contributor license agreements. See the NOTICE file |
| distributed with this work for additional information |
| regarding copyright ownership. The ASF licenses this file |
| to you under the Apache License, Version 2.0 (the |
| "License"); you may not use this file except in compliance |
| with the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, |
| software distributed under the License is distributed on an |
| "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| KIND, either express or implied. See the License for the |
| specific language governing permissions and limitations |
| under the License. |
| --> |
| |
| # MATLAB Interface to Apache Arrow |
| |
| ## Status |
| |
| > **Warning** The MATLAB interface is under active development and should be considered experimental. |
| |
| This is a very early stage MATLAB interface to the Apache Arrow C++ libraries. |
| |
| Currently, the MATLAB interface supports: |
| |
| 1. Converting between a subset of Arrow `Array` types and MATLAB array types (see table below) |
| 2. Converting between MATLAB `table`s and `arrow.tabular.RecordBatch`s |
| 3. Creating Arrow `Field`s, `Schema`s, and `Type`s |
| 4. Reading and writing Feather V1 files |
| |
| Supported `arrow.array.Array` types are included in the table below. |
| |
| **NOTE**: All Arrow `Array` classes listed below are part of the `arrow.array` package (e.g. `arrow.array.Float64Array`). |
| |
| | MATLAB Array Type | Arrow Array Type | |
| | ----------------- | ---------------- | |
| | `uint8` | `UInt8Array` | |
| | `uint16` | `UInt16Array` | |
| | `uint32` | `UInt32Array` | |
| | `uint64` | `UInt64Array` | |
| | `int8` | `Int8Array` | |
| | `int16` | `Int16Array` | |
| | `int32` | `Int32Array` | |
| | `int64` | `Int64Array` | |
| | `single` | `Float32Array` | |
| | `double` | `Float64Array` | |
| | `logical` | `BooleanArray` | |
| | `string` | `StringArray` | |
| | `datetime` | `TimestampArray` | |
| | `datetime` | `Date32Array` | |
| | `datetime` | `Date64Array` | |
| | `duration` | `Time32Array` | |
| | `duration` | `Time64Array` | |
| | `cell` | `ListArray` | |
| | `table` | `StructArray` | |
| |
| ## Prerequisites |
| |
| To build the MATLAB Interface to Apache Arrow from source, the following software must be installed on the target machine: |
| |
| 1. [MATLAB](https://www.mathworks.com/products/get-matlab.html) |
| 2. [CMake](https://cmake.org/cmake/help/latest/) |
| 3. C++ compiler which supports C++20 (e.g. [`gcc`](https://gcc.gnu.org/) on Linux, [`Xcode`](https://developer.apple.com/xcode/) on macOS, or [`Visual Studio`](https://visualstudio.microsoft.com/) on Windows) |
| 4. [Git](https://git-scm.com/) |
| |
| ## Setup |
| |
| To set up a local working copy of the source code, start by cloning the [`apache/arrow`](https://github.com/apache/arrow) GitHub repository using [Git](https://git-scm.com/): |
| |
| ```console |
| $ git clone https://github.com/apache/arrow.git |
| ``` |
| |
| After cloning, change the working directory to the `matlab` subdirectory: |
| |
| ```console |
| $ cd arrow/matlab |
| ``` |
| |
| ## Build |
| |
| To build the MATLAB interface, use [CMake](https://cmake.org/cmake/help/latest/): |
| |
| ```console |
| $ cmake -S . -B build |
| $ cmake --build build --config Release |
| ``` |
| |
| ## Install |
| |
| To install the MATLAB interface to the default software installation location for the target machine (e.g. `/usr/local` on Linux or `C:\Program Files` on Windows), pass the `--target install` flag to CMake. |
| |
| ```console |
| $ cmake --build build --config Release --target install |
| ``` |
| |
| As part of the install step, the installation directory is added to the [MATLAB Search Path](https://mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html). |
| |
| **Note**: This step may fail if the current user is lacking necessary filesystem permissions. If the install step fails, the installation directory can be manually added to the MATLAB Search Path using the [`addpath`](https://www.mathworks.com/help/matlab/ref/addpath.html) command. |
| |
| ## Test |
| |
| To run the MATLAB tests, start MATLAB in the `arrow/matlab` directory and call the [`runtests`](https://mathworks.com/help/matlab/ref/runtests.html) command on the `test` directory with `IncludeSubFolders=true`: |
| |
| ``` matlab |
| >> runtests("test", IncludeSubFolders=true); |
| ``` |
| |
| Refer to [Testing Guidelines](doc/testing_guidelines_for_the_matlab_interface_to_apache_arrow.md) for more information. |
| |
| ## Usage |
| |
| Included below are some example code snippets that illustrate how to use the MATLAB interface. |
| |
| ### Arrow `Array` classes (i.e. `arrow.array.<Array>`) |
| |
| #### Create an Arrow `Float64Array` from a MATLAB `double` array |
| |
| ```matlab |
| >> matlabArray = double([1, 2, 3]) |
| |
| matlabArray = |
| |
| 1 2 3 |
| |
| >> arrowArray = arrow.array(matlabArray) |
| |
| arrowArray = |
| |
| Float64Array with 3 elements and 0 null values: |
| |
| 1 | 2 | 3 |
| ``` |
| |
| #### Create a MATLAB `logical` array from an Arrow `BooleanArray` |
| |
| ```matlab |
| >> arrowArray = arrow.array([true, false, true]) |
| |
| arrowArray = |
| |
| BooleanArray with 3 elements and 0 null values: |
| |
| true | false | true |
| |
| >> matlabArray = toMATLAB(arrowArray) |
| |
| matlabArray = |
| |
| 3×1 logical array |
| |
| 1 |
| 0 |
| 1 |
| ``` |
| |
| #### Specify `Null` Values when constructing an `arrow.array.Int8Array` |
| |
| ```matlab |
| >> matlabArray = int8([122, -1, 456, -10, 789]) |
| |
| matlabArray = |
| |
| 1×5 int8 row vector |
| |
| 122 -1 127 -10 127 |
| |
| % Treat all negative array elements as Null |
| >> validElements = matlabArray > 0 |
| |
| validElements = |
| |
| 1×5 logical array |
| |
| 1 0 1 0 1 |
| |
| % Specify which values are Null/Valid by supplying a logical validity "mask" |
| >> arrowArray = arrow.array(matlabArray, Valid=validElements) |
| |
| arrowArray = |
| |
| Int8Array with 5 elements and 2 null values: |
| |
| 122 | null | 127 | null | 127 |
| ``` |
| |
| ### Arrow `RecordBatch` class |
| |
| #### Create an Arrow `RecordBatch` from a MATLAB `table` |
| |
| ```matlab |
| >> matlabTable = table(["A"; "B"; "C"], [1; 2; 3], [true; false; true]) |
| |
| matlabTable = |
| |
| 3x3 table |
| |
| Var1 Var2 Var3 |
| ____ ____ _____ |
| |
| "A" 1 true |
| "B" 2 false |
| "C" 3 true |
| |
| >> arrowRecordBatch = arrow.recordBatch(matlabTable) |
| |
| arrowRecordBatch = |
| |
| Arrow RecordBatch with 3 rows and 3 columns: |
| |
| Schema: |
| |
| Var1: String | Var2: Float64 | Var3: Boolean |
| |
| First Row: |
| |
| "A" | 1 | true |
| ``` |
| |
| #### Create a MATLAB `table` from an Arrow `RecordBatch` |
| |
| ```matlab |
| >> arrowRecordBatch |
| |
| arrowRecordBatch = |
| |
| Arrow RecordBatch with 3 rows and 3 columns: |
| |
| Schema: |
| |
| Var1: String | Var2: Float64 | Var3: Boolean |
| |
| First Row: |
| |
| "A" | 1 | true |
| |
| >> matlabTable = table(arrowRecordBatch) |
| |
| matlabTable = |
| |
| 3x3 table |
| |
| Var1 Var2 Var3 |
| ____ ____ _____ |
| |
| "A" 1 true |
| "B" 2 false |
| "C" 3 true |
| ``` |
| |
| #### Create an Arrow `RecordBatch` from multiple Arrow `Array`s |
| |
| |
| ```matlab |
| >> stringArray = arrow.array(["A", "B", "C"]) |
| |
| stringArray = |
| |
| StringArray with 3 elements and 0 null values: |
| |
| "A" | "B" | "C" |
| |
| >> timestampArray = arrow.array([datetime(1997, 01, 01), datetime(1998, 01, 01), datetime(1999, 01, 01)]) |
| |
| timestampArray = |
| |
| TimestampArray with 3 elements and 0 null values: |
| |
| 1997-01-01 00:00:00.000000 | 1998-01-01 00:00:00.000000 | 1999-01-01 00:00:00.000000 |
| |
| >> booleanArray = arrow.array([true, false, true]) |
| |
| booleanArray = |
| |
| BooleanArray with 3 elements and 0 null values: |
| |
| true | false | true |
| |
| >> arrowRecordBatch = arrow.tabular.RecordBatch.fromArrays(stringArray, timestampArray, booleanArray) |
| |
| arrowRecordBatch = |
| |
| Arrow RecordBatch with 3 rows and 3 columns: |
| |
| Schema: |
| |
| Column1: String | Column2: Timestamp | Column3: Boolean |
| |
| First Row: |
| |
| "A" | 1997-01-01 00:00:00.000000 | true |
| ``` |
| |
| #### Extract a column from a `RecordBatch` by index |
| |
| ```matlab |
| >> arrowRecordBatch = arrow.tabular.RecordBatch.fromArrays(stringArray, timestampArray, booleanArray) |
| |
| arrowRecordBatch = |
| |
| Arrow RecordBatch with 3 rows and 3 columns: |
| |
| Schema: |
| |
| Column1: String | Column2: Timestamp | Column3: Boolean |
| |
| First Row: |
| |
| "A" | 1997-01-01 00:00:00.000000 | true |
| |
| >> timestampArray = arrowRecordBatch.column(2) |
| |
| timestampArray = |
| |
| TimestampArray with 3 elements and 0 null values: |
| |
| 1997-01-01 00:00:00.000000 | 1998-01-01 00:00:00.000000 | 1999-01-01 00:00:00.000000 |
| ``` |
| |
| ### Arrow `Type` classes (i.e. `arrow.type.<Type>`) |
| |
| #### Create an Arrow `Int8Type` object |
| |
| ```matlab |
| >> type = arrow.int8() |
| |
| type = |
| |
| Int8Type with properties: |
| |
| ID: Int8 |
| ``` |
| |
| #### Create an Arrow `TimestampType` object with a specific `TimeUnit` and `TimeZone` |
| |
| ```matlab |
| >> type = arrow.timestamp(TimeUnit="Second", TimeZone="Asia/Kolkata") |
| |
| type = |
| |
| TimestampType with properties: |
| |
| ID: Timestamp |
| TimeUnit: Second |
| TimeZone: "Asia/Kolkata" |
| ``` |
| |
| |
| #### Get the type enumeration `ID` for an Arrow `Type` object |
| |
| ```matlab |
| >> type.ID |
| |
| ans = |
| |
| ID enumeration |
| |
| Timestamp |
| |
| >> type = arrow.string() |
| |
| type = |
| |
| StringType with properties: |
| |
| ID: String |
| |
| >> type.ID |
| |
| ans = |
| |
| ID enumeration |
| |
| String |
| ``` |
| |
| ### Arrow `Field` class |
| |
| #### Create an Arrow `Field` with type `Int8Type` |
| |
| ```matlab |
| >> field = arrow.field("Number", arrow.int8()) |
| |
| field = |
| |
| Field with properties: |
| |
| Name: "Number" |
| Type: [1x1 arrow.type.Int8Type] |
| |
| >> field.Name |
| |
| ans = |
| |
| "Number" |
| |
| >> field.Type |
| |
| ans = |
| |
| Int8Type with properties: |
| |
| ID: Int8 |
| |
| ``` |
| |
| #### Create an Arrow `Field` with type `StringType` |
| |
| ```matlab |
| >> field = arrow.field("Letter", arrow.string()) |
| |
| field = |
| |
| Field with properties: |
| |
| Name: "Letter" |
| Type: [1x1 arrow.type.StringType] |
| |
| >> field.Name |
| |
| ans = |
| |
| "Letter" |
| |
| >> field.Type |
| |
| ans = |
| |
| StringType with properties: |
| |
| ID: String |
| ``` |
| |
| #### Extract an Arrow `Field` from an Arrow `Schema` by index |
| |
| ```matlab |
| >> arrowSchema |
| |
| arrowSchema = |
| |
| Arrow Schema with 2 fields: |
| |
| Letter: String | Number: Int8 |
| |
| % Specify the field to extract by its index (i.e. 2) |
| >> field = arrowSchema.field(2) |
| |
| field = |
| |
| Field with properties: |
| |
| Name: "Number" |
| Type: [1x1 arrow.type.Int8Type] |
| ``` |
| |
| #### Extract an Arrow `Field` from an Arrow `Schema` by name |
| |
| ```matlab |
| >> arrowSchema |
| |
| arrowSchema = |
| |
| Arrow Schema with 2 fields: |
| |
| Letter: String | Number: Int8 |
| |
| % Specify the field to extract by its name (i.e. "Letter") |
| >> field = arrowSchema.field("Letter") |
| |
| field = |
| |
| Field with properties: |
| |
| Name: "Letter" |
| Type: [1x1 arrow.type.StringType] |
| ``` |
| |
| ### Arrow `Schema` class |
| |
| #### Create an Arrow `Schema` from multiple Arrow `Field`s |
| |
| ```matlab |
| >> letter = arrow.field("Letter", arrow.string()) |
| |
| letter = |
| |
| Field with properties: |
| |
| Name: "Letter" |
| Type: [1x1 arrow.type.StringType] |
| |
| >> number = arrow.field("Number", arrow.int8()) |
| |
| number = |
| |
| Field with properties: |
| |
| Name: "Number" |
| Type: [1x1 arrow.type.Int8Type] |
| |
| >> schema = arrow.schema([letter, number]) |
| |
| schema = |
| |
| Arrow Schema with 2 fields: |
| |
| Letter: String | Number: Int8 |
| ``` |
| |
| #### Get the `Schema` of an Arrow `RecordBatch` |
| |
| ```matlab |
| >> matlabTable = table(["A"; "B"; "C"], [1; 2; 3], VariableNames=["Letter", "Number"]) |
| |
| matlabTable = |
| |
| 3x2 table |
| |
| Letter Number |
| ______ ______ |
| |
| "A" 1 |
| "B" 2 |
| "C" 3 |
| |
| >> arrowRecordBatch = arrow.recordBatch(matlabTable) |
| |
| arrowRecordBatch = |
| |
| Arrow RecordBatch with 3 rows and 2 columns: |
| |
| Schema: |
| |
| Letter: String | Number: Float64 |
| |
| First Row: |
| |
| "A" | 1 |
| |
| >> arrowSchema = arrowRecordBatch.Schema |
| |
| arrowSchema = |
| |
| Arrow Schema with 2 fields: |
| |
| Letter: String | Number: Float64 |
| ``` |
| |
| ### Feather V1 |
| |
| #### Write a MATLAB table to a Feather V1 file |
| |
| ``` matlab |
| >> t = table(["A"; "B"; "C"], [1; 2; 3], [true; false; true]) |
| |
| t = |
| |
| 3×3 table |
| |
| Var1 Var2 Var3 |
| ____ ____ _____ |
| |
| "A" 1 true |
| "B" 2 false |
| "C" 3 true |
| |
| >> filename = "table.feather"; |
| |
| >> featherwrite(filename, t) |
| ``` |
| |
| #### Read a Feather V1 file into a MATLAB table |
| |
| ``` matlab |
| >> filename = "table.feather"; |
| |
| >> t = featherread(filename) |
| |
| t = |
| |
| 3×3 table |
| |
| Var1 Var2 Var3 |
| ____ ____ _____ |
| |
| "A" 1 true |
| "B" 2 false |
| "C" 3 true |
| ``` |
| |