blob: e91f80bb558f1e6058d900b0f55c866f8a690e4e [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Defines partition kernel for `ArrayRef`
use crate::compute::kernels::sort::LexicographicalComparator;
use crate::compute::SortColumn;
use crate::error::{ArrowError, Result};
use std::cmp::Ordering;
use std::ops::Range;
/// Given a list of already sorted columns, find partition ranges that would partition
/// lexicographically equal values across columns.
///
/// Here LexicographicalComparator is used in conjunction with binary
/// search so the columns *MUST* be pre-sorted already.
///
/// The returned vec would be of size k where k is cardinality of the sorted values; Consecutive
/// values will be connected: (a, b) and (b, c), where start = 0 and end = n for the first and last
/// range.
pub fn lexicographical_partition_ranges(
columns: &[SortColumn],
) -> Result<Vec<Range<usize>>> {
let partition_points = lexicographical_partition_points(columns)?;
Ok(partition_points
.iter()
.zip(partition_points[1..].iter())
.map(|(&start, &end)| Range { start, end })
.collect())
}
/// Given a list of already sorted columns, find partition ranges that would partition
/// lexicographically equal values across columns.
///
/// Here LexicographicalComparator is used in conjunction with binary
/// search so the columns *MUST* be pre-sorted already.
///
/// The returned vec would be of size k+1 where k is cardinality of the sorted values; the first and
/// last value would be 0 and n.
fn lexicographical_partition_points(columns: &[SortColumn]) -> Result<Vec<usize>> {
if columns.is_empty() {
return Err(ArrowError::InvalidArgumentError(
"Sort requires at least one column".to_string(),
));
}
let row_count = columns[0].values.len();
if columns.iter().any(|item| item.values.len() != row_count) {
return Err(ArrowError::ComputeError(
"Lexical sort columns have different row counts".to_string(),
));
};
let mut result = vec![];
if row_count == 0 {
return Ok(result);
}
let lexicographical_comparator = LexicographicalComparator::try_new(columns)?;
let value_indices = (0..row_count).collect::<Vec<usize>>();
let mut previous_partition_point = 0;
result.push(previous_partition_point);
while previous_partition_point < row_count {
// invariant:
// value_indices[0..previous_partition_point] all are values <= value_indices[previous_partition_point]
// so in order to save time we can do binary search on the value_indices[previous_partition_point..]
// and find when any value is greater than value_indices[previous_partition_point]; because we are using
// new indices, the new offset is _added_ to the previous_partition_point.
//
// be careful that idx is of type &usize which points to the actual value within value_indices, which itself
// contains usize (0..row_count), providing access to lexicographical_comparator as pointers into the
// original columnar data.
previous_partition_point += value_indices[previous_partition_point..]
.partition_point(|idx| {
lexicographical_comparator.compare(idx, &previous_partition_point)
!= Ordering::Greater
});
result.push(previous_partition_point);
}
Ok(result)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::array::*;
use crate::compute::SortOptions;
use crate::datatypes::DataType;
use std::sync::Arc;
#[test]
fn test_lexicographical_partition_points_empty() {
let input = vec![];
assert!(
lexicographical_partition_points(&input).is_err(),
"lexicographical_partition_points should reject columns with empty rows"
);
}
#[test]
fn test_lexicographical_partition_points_unaligned_rows() {
let input = vec![
SortColumn {
values: Arc::new(Int64Array::from(vec![None, Some(-1)])) as ArrayRef,
options: None,
},
SortColumn {
values: Arc::new(StringArray::from(vec![Some("foo")])) as ArrayRef,
options: None,
},
];
assert!(
lexicographical_partition_points(&input).is_err(),
"lexicographical_partition_points should reject columns with different row counts"
);
}
#[test]
fn test_lexicographical_partition_single_column() -> Result<()> {
let input = vec![SortColumn {
values: Arc::new(Int64Array::from(vec![1, 2, 2, 2, 2, 2, 2, 2, 9]))
as ArrayRef,
options: Some(SortOptions {
descending: false,
nulls_first: true,
}),
}];
{
let results = lexicographical_partition_points(&input)?;
assert_eq!(vec![0, 1, 8, 9], results);
}
{
let results = lexicographical_partition_ranges(&input)?;
assert_eq!(
vec![(0_usize..1_usize), (1_usize..8_usize), (8_usize..9_usize)],
results
);
}
Ok(())
}
#[test]
fn test_lexicographical_partition_all_equal_values() -> Result<()> {
let input = vec![SortColumn {
values: Arc::new(Int64Array::from_value(1, 1000)) as ArrayRef,
options: Some(SortOptions {
descending: false,
nulls_first: true,
}),
}];
{
let results = lexicographical_partition_points(&input)?;
assert_eq!(vec![0, 1000], results);
}
{
let results = lexicographical_partition_ranges(&input)?;
assert_eq!(vec![(0_usize..1000_usize)], results);
}
Ok(())
}
#[test]
fn test_lexicographical_partition_all_null_values() -> Result<()> {
let input = vec![
SortColumn {
values: new_null_array(&DataType::Int8, 1000),
options: Some(SortOptions {
descending: false,
nulls_first: true,
}),
},
SortColumn {
values: new_null_array(&DataType::UInt16, 1000),
options: Some(SortOptions {
descending: false,
nulls_first: false,
}),
},
];
{
let results = lexicographical_partition_points(&input)?;
assert_eq!(vec![0, 1000], results);
}
{
let results = lexicographical_partition_ranges(&input)?;
assert_eq!(vec![(0_usize..1000_usize)], results);
}
Ok(())
}
#[test]
fn test_lexicographical_partition_unique_column_1() -> Result<()> {
let input = vec![
SortColumn {
values: Arc::new(Int64Array::from(vec![None, Some(-1)])) as ArrayRef,
options: Some(SortOptions {
descending: false,
nulls_first: true,
}),
},
SortColumn {
values: Arc::new(StringArray::from(vec![Some("foo"), Some("bar")]))
as ArrayRef,
options: Some(SortOptions {
descending: true,
nulls_first: true,
}),
},
];
{
let results = lexicographical_partition_points(&input)?;
assert_eq!(vec![0, 1, 2], results);
}
{
let results = lexicographical_partition_ranges(&input)?;
assert_eq!(vec![(0_usize..1_usize), (1_usize..2_usize)], results);
}
Ok(())
}
#[test]
fn test_lexicographical_partition_unique_column_2() -> Result<()> {
let input = vec![
SortColumn {
values: Arc::new(Int64Array::from(vec![None, Some(-1), Some(-1)]))
as ArrayRef,
options: Some(SortOptions {
descending: false,
nulls_first: true,
}),
},
SortColumn {
values: Arc::new(StringArray::from(vec![
Some("foo"),
Some("bar"),
Some("apple"),
])) as ArrayRef,
options: Some(SortOptions {
descending: true,
nulls_first: true,
}),
},
];
{
let results = lexicographical_partition_points(&input)?;
assert_eq!(vec![0, 1, 2, 3], results);
}
{
let results = lexicographical_partition_ranges(&input)?;
assert_eq!(
vec![(0_usize..1_usize), (1_usize..2_usize), (2_usize..3_usize),],
results
);
}
Ok(())
}
#[test]
fn test_lexicographical_partition_non_unique_column_1() -> Result<()> {
let input = vec![
SortColumn {
values: Arc::new(Int64Array::from(vec![
None,
Some(-1),
Some(-1),
Some(1),
])) as ArrayRef,
options: Some(SortOptions {
descending: false,
nulls_first: true,
}),
},
SortColumn {
values: Arc::new(StringArray::from(vec![
Some("foo"),
Some("bar"),
Some("bar"),
Some("bar"),
])) as ArrayRef,
options: Some(SortOptions {
descending: true,
nulls_first: true,
}),
},
];
{
let results = lexicographical_partition_points(&input)?;
assert_eq!(vec![0, 1, 3, 4], results);
}
{
let results = lexicographical_partition_ranges(&input)?;
assert_eq!(
vec![(0_usize..1_usize), (1_usize..3_usize), (3_usize..4_usize),],
results
);
}
Ok(())
}
}