blob: cd1f25efea065bc1ca18b933dd02c4bde8a68911 [file] [log] [blame]
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Utilities to generate random arrays and batches
use std::{convert::TryFrom, sync::Arc};
use rand::{distributions::uniform::SampleUniform, Rng};
use crate::error::{ArrowError, Result};
use crate::record_batch::{RecordBatch, RecordBatchOptions};
use crate::{array::*, datatypes::SchemaRef};
use crate::{
buffer::{Buffer, MutableBuffer},
datatypes::*,
};
use super::{bench_util::*, bit_util, test_util::seedable_rng};
/// Create a random [RecordBatch] from a schema
pub fn create_random_batch(
schema: SchemaRef,
size: usize,
null_density: f32,
true_density: f32,
) -> Result<RecordBatch> {
let columns = schema
.fields()
.iter()
.map(|field| create_random_array(field, size, null_density, true_density))
.collect::<Result<Vec<ArrayRef>>>()?;
RecordBatch::try_new_with_options(
schema,
columns,
&RecordBatchOptions {
match_field_names: false,
},
)
}
/// Create a random [ArrayRef] from a [DataType] with a length,
/// null density and true density (for [BooleanArray]).
pub fn create_random_array(
field: &Field,
size: usize,
null_density: f32,
true_density: f32,
) -> Result<ArrayRef> {
// Override null density with 0.0 if the array is non-nullable
let null_density = match field.is_nullable() {
true => null_density,
false => 0.0,
};
use DataType::*;
Ok(match field.data_type() {
Null => Arc::new(NullArray::new(size)) as ArrayRef,
Boolean => Arc::new(create_boolean_array(size, null_density, true_density)),
Int8 => Arc::new(create_primitive_array::<Int8Type>(size, null_density)),
Int16 => Arc::new(create_primitive_array::<Int16Type>(size, null_density)),
Int32 => Arc::new(create_primitive_array::<Int32Type>(size, null_density)),
Int64 => Arc::new(create_primitive_array::<Int64Type>(size, null_density)),
UInt8 => Arc::new(create_primitive_array::<UInt8Type>(size, null_density)),
UInt16 => Arc::new(create_primitive_array::<UInt16Type>(size, null_density)),
UInt32 => Arc::new(create_primitive_array::<UInt32Type>(size, null_density)),
UInt64 => Arc::new(create_primitive_array::<UInt64Type>(size, null_density)),
Float16 => {
return Err(ArrowError::NotYetImplemented(
"Float16 is not implememted".to_string(),
))
}
Float32 => Arc::new(create_primitive_array::<Float32Type>(size, null_density)),
Float64 => Arc::new(create_primitive_array::<Float64Type>(size, null_density)),
Timestamp(_, _) => {
let int64_array =
Arc::new(create_primitive_array::<Int64Type>(size, null_density))
as ArrayRef;
return crate::compute::cast(&int64_array, field.data_type());
}
Date32 => Arc::new(create_primitive_array::<Date32Type>(size, null_density)),
Date64 => Arc::new(create_primitive_array::<Date64Type>(size, null_density)),
Time32(unit) => match unit {
TimeUnit::Second => Arc::new(create_primitive_array::<Time32SecondType>(
size,
null_density,
)) as ArrayRef,
TimeUnit::Millisecond => Arc::new(create_primitive_array::<
Time32MillisecondType,
>(size, null_density)),
_ => {
return Err(ArrowError::InvalidArgumentError(format!(
"Unsupported unit {:?} for Time32",
unit
)))
}
},
Time64(unit) => match unit {
TimeUnit::Microsecond => Arc::new(create_primitive_array::<
Time64MicrosecondType,
>(size, null_density)) as ArrayRef,
TimeUnit::Nanosecond => Arc::new(create_primitive_array::<
Time64NanosecondType,
>(size, null_density)),
_ => {
return Err(ArrowError::InvalidArgumentError(format!(
"Unsupported unit {:?} for Time64",
unit
)))
}
},
Utf8 => Arc::new(create_string_array::<i32>(size, null_density)),
LargeUtf8 => Arc::new(create_string_array::<i64>(size, null_density)),
Binary => Arc::new(create_binary_array::<i32>(size, null_density)),
LargeBinary => Arc::new(create_binary_array::<i64>(size, null_density)),
FixedSizeBinary(len) => {
Arc::new(create_fsb_array(size, null_density, *len as usize))
}
List(_) => create_random_list_array(field, size, null_density, true_density)?,
LargeList(_) => {
create_random_list_array(field, size, null_density, true_density)?
}
Struct(fields) => Arc::new(StructArray::try_from(
fields
.iter()
.map(|struct_field| {
create_random_array(struct_field, size, null_density, true_density)
.map(|array_ref| (struct_field.name().as_str(), array_ref))
})
.collect::<Result<Vec<(&str, ArrayRef)>>>()?,
)?),
other => {
return Err(ArrowError::NotYetImplemented(format!(
"Generating random arrays not yet implemented for {:?}",
other
)))
}
})
}
#[inline]
fn create_random_list_array(
field: &Field,
size: usize,
null_density: f32,
true_density: f32,
) -> Result<ArrayRef> {
// Override null density with 0.0 if the array is non-nullable
let null_density = match field.is_nullable() {
true => null_density,
false => 0.0,
};
let list_field;
let (offsets, child_len) = match field.data_type() {
DataType::List(f) => {
let (offsets, child_len) = create_random_offsets::<i32>(size, 0, 5);
list_field = f;
(Buffer::from(offsets.to_byte_slice()), child_len as usize)
}
DataType::LargeList(f) => {
let (offsets, child_len) = create_random_offsets::<i64>(size, 0, 5);
list_field = f;
(Buffer::from(offsets.to_byte_slice()), child_len as usize)
}
_ => {
return Err(ArrowError::InvalidArgumentError(format!(
"Cannot create list array for field {:?}",
field
)))
}
};
// Create list's child data
let child_array =
create_random_array(list_field, child_len as usize, null_density, true_density)?;
let child_data = child_array.data();
// Create list's null buffers, if it is nullable
let null_buffer = match field.is_nullable() {
true => Some(create_random_null_buffer(size, null_density)),
false => None,
};
let list_data = ArrayData::new(
field.data_type().clone(),
size,
None,
null_buffer,
0,
vec![offsets],
vec![child_data.clone()],
);
Ok(make_array(list_data))
}
/// Generate random offsets for list arrays
fn create_random_offsets<T: OffsetSizeTrait + SampleUniform>(
size: usize,
min: T,
max: T,
) -> (Vec<T>, T) {
let rng = &mut seedable_rng();
let mut current_offset = T::zero();
let mut offsets = Vec::with_capacity(size + 1);
offsets.push(current_offset);
(0..size).for_each(|_| {
current_offset += rng.gen_range(min, max);
offsets.push(current_offset);
});
(offsets, current_offset)
}
fn create_random_null_buffer(size: usize, null_density: f32) -> Buffer {
let mut rng = seedable_rng();
let mut mut_buf = MutableBuffer::new_null(size);
{
let mut_slice = mut_buf.as_slice_mut();
(0..size).for_each(|i| {
if rng.gen::<f32>() >= null_density {
bit_util::set_bit(mut_slice, i)
}
})
};
mut_buf.into()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_create_batch() {
let size = 32;
let fields = vec![Field::new("a", DataType::Int32, true)];
let schema = Schema::new(fields);
let schema_ref = Arc::new(schema);
let batch = create_random_batch(schema_ref.clone(), size, 0.35, 0.7).unwrap();
assert_eq!(batch.schema(), schema_ref);
assert_eq!(batch.num_columns(), schema_ref.fields().len());
for array in batch.columns() {
assert_eq!(array.len(), size);
}
}
#[test]
fn test_create_batch_non_null() {
let size = 32;
let fields = vec![
Field::new("a", DataType::Int32, false),
Field::new(
"b",
DataType::List(Box::new(Field::new("item", DataType::LargeUtf8, true))),
false,
),
Field::new("a", DataType::Int32, false),
];
let schema = Schema::new(fields);
let schema_ref = Arc::new(schema);
let batch = create_random_batch(schema_ref.clone(), size, 0.35, 0.7).unwrap();
assert_eq!(batch.schema(), schema_ref);
assert_eq!(batch.num_columns(), schema_ref.fields().len());
for array in batch.columns() {
assert_eq!(array.null_count(), 0);
}
// Test that the list's child values are non-null
let b_array = batch.column(1);
let list_array = b_array.as_any().downcast_ref::<ListArray>().unwrap();
let child_array = make_array(list_array.data().child_data()[0].clone());
assert_eq!(child_array.null_count(), 0);
// There should be more values than the list, to show that it's a list
assert!(child_array.len() > list_array.len());
}
#[test]
fn test_create_struct_array() {
let size = 32;
let struct_fields = vec![
Field::new("b", DataType::Boolean, true),
Field::new(
"c",
DataType::LargeList(Box::new(Field::new(
"item",
DataType::List(Box::new(Field::new(
"item",
DataType::FixedSizeBinary(6),
true,
))),
false,
))),
true,
),
Field::new(
"d",
DataType::Struct(vec![
Field::new("d_x", DataType::Int32, true),
Field::new("d_y", DataType::Float32, false),
Field::new("d_z", DataType::Binary, true),
]),
true,
),
];
let field = Field::new("struct", DataType::Struct(struct_fields), true);
let array = create_random_array(&field, size, 0.2, 0.5).unwrap();
assert_eq!(array.len(), 32);
let struct_array = array.as_any().downcast_ref::<StructArray>().unwrap();
assert_eq!(struct_array.columns().len(), 3);
// Test that the nested list makes sense,
// i.e. its children's values are more than the parent, to show repetition
let col_c = struct_array.column_by_name("c").unwrap();
let col_c = col_c.as_any().downcast_ref::<LargeListArray>().unwrap();
assert_eq!(col_c.len(), size);
let col_c_values = col_c.values();
assert!(col_c_values.len() > size);
// col_c_values should be a list
let col_c_list = col_c_values.as_any().downcast_ref::<ListArray>().unwrap();
// Its values should be FixedSizeBinary(6)
let fsb = col_c_list.values();
assert_eq!(fsb.data_type(), &DataType::FixedSizeBinary(6));
assert!(fsb.len() > col_c_list.len());
// Test nested struct
let col_d = struct_array.column_by_name("d").unwrap();
let col_d = col_d.as_any().downcast_ref::<StructArray>().unwrap();
let col_d_y = col_d.column_by_name("d_y").unwrap();
assert_eq!(col_d_y.data_type(), &DataType::Float32);
assert_eq!(col_d_y.null_count(), 0);
}
}